首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
An experimental study was performed on the combustion of lean-premixed spays in a counterflow. n-Decane was used as a liquid fuel with low volatility. The flame structure and stabilization were discussed based on the flame-spread mechanism of a droplet array with a low-volatility fuel. The spray flame consisted of a blue region and a yellow luminous region. The flame spread among droplets and group-flame formation through the droplet interaction were observed on the premixed spray side, while envelope flames were also observed on the opposing airflow side. The blue-flame region consisted of premixed flames propagating in the mixture layer around each droplet, the envelope diffusion flames around each droplet, the lower parts of the group diffusion flame surrounding each droplet cluster, and the envelope flame around droplets passing through the group flame. The flame was stabilized within a specific range of the mean droplet diameter via a balance between the droplet velocity and the flame-spread rate of the premixed spray.  相似文献   

2.
Flame spread on a fuel droplet array has been studied as a simple model of spray combustion. A three-fuel-droplet array with a pendulum suspender was employed to investigate interactions between flame spread and droplet motion in the axial direction. Initial droplet diameter was 0.8 mm, and fuel was n-heptane. A silicon carbide pendulum suspender of 15 μm in diameter and 30 mm in length was used for the third droplet. The first fixed droplet was ignited by electric spark. Behavior of the flame and the third droplet was observed using a high-speed video camera with an image intensifier. Particle tracking velocimetry (PTV) measurements were performed to explain the behavior of the third movable droplet. The dimensionless droplet span, which is the average of droplet-to-droplet distances divided by the average initial diameter of the three droplets, was varied from 2.5 to 8 for observing flame spread, and fixed at 5.5 for PTV measurements. It was observed that the third droplet moved away from the second droplet before the flame spread to the third droplet. The displacement of the third droplet is remarkable when the dimensionless droplet span is close to the limit of flame spread. This implies that the movement of the droplet decreases the dimensionless span of the flame spread limit and the flame spread speed near the flame spread limit. Results of PTV measurements suggest that the heat expansion wave, caused by ignition of the premixture which was accumulated around the second droplet, and the burned gas flow from the second droplet pushed away the third droplet; then natural convection, induced by the flames of the first and second droplets, drew the third droplet to the second droplet. The heat expansion wave and the burned gas flow of the second droplet reached nearly 12 in dimensionless span.  相似文献   

3.
Flame spreading along a fuel droplet array at microgravity has been studied as a simple model of spray combustion. A three droplet array with a pendulum suspender was employed to investigate interactions between flame spreading and droplet motion in the array direction. Initial droplet diameter was 0.8 mm and fuel was n-heptane. A silicon carbide pendulum suspender of 15 μm in diameter and 30 mm in length was used for the third droplet. The first fixed droplet was ignited by electric spark. Behavior of the flame and the third droplet was observed using a high-speed video camera. Dimensionless span, which is the averaged droplet span divided by the averaged initial diameter of the three droplets, was varied from 2.7 to 10. Large displacement of the movable droplet was observed after group flame grew around the movable droplet. As the initial dimensionless span increased, the averaged droplet speed after the occurrence of flame spreading to the movable droplet increased steeply, taking the maximum value around 5 in initial dimensionless span, and then decreased gradually. The movable droplet advanced toward the second droplet in small spans and moved away from the second droplet in large spans. The direction of the motion changed around 4.6 in initial dimensionless span. Flame spread induction time from the second to the third droplet increased exponentially as the initial dimensionless span was increased. The induction time of flame spreading to a movable droplet was longer than that of flame spreading to a fixed droplet. From calculations of flame spreading along a 20-droplet array, it was predicted that the droplet speed nearly converged after flame spread to the sixteenth droplet. The maximum speed of the nineteenth droplet appeared around 7.5 in the initial dimensionless span.  相似文献   

4.
The quasi-steady vaporization and combustion of multiple-droplet arrays is studied numerically. Utilizing the Shvab–Zeldovich formulation, a transformation of the governing equations to a three-dimensional Laplace’s equation is performed, and the solution to Laplace’s equation is obtained numerically to find the effects of droplet interactions in symmetric, multiple-droplet arrays. Vaporization rates, flame surface shapes, and flame locations are found for different droplet array configurations and fuels. The number of droplets, the droplet arrangement within the arrays, and the droplet spacing within the arrays are varied to determine the effects of these parameters. Computations are performed for uniformly spaced three-dimensional arrays of up to 216 droplets, with center-to-center spacing ranging from 3 to 25 droplet radii. As a result of the droplet interactions, the number of droplets and relative droplet spacing significantly affect the vaporization rate of individual droplets within the array, and consequently the flame shape and location. For small droplet spacing, the individual droplet vaporization rate decreases below that obtained for an isolated droplet by several orders of magnitude. A similarity parameter which correlates vaporization rates with array size and spacing is identified. Individual droplet flames, internal group combustion, and external group combustion can be observed depending on the droplet geometry and boundary conditions.  相似文献   

5.
蒋涛  陆林广  陆伟刚 《物理学报》2013,62(22):224701-224701
运用一种改进光滑粒子动力学(SPH)方法模拟了相溶和不相溶两种情况下的等直径微液滴碰撞动力学过程. 为提高传统SPH方法的数值精度和稳定性, 采用一种不涉及核导数计算的核梯度改进形式; 为处理液滴界面张力采用修正的van der Waals表面张力模型. 通过模拟牛顿液滴碰撞聚并变形过程并与相关文献或试验结果进行对比, 验证了改进SPH 方法模拟微液滴碰撞过程的可靠性. 随后, 研究了基于van der Waals模型相溶聚合物微液滴碰撞聚并变形过程及不相溶微液滴碰撞后的反弹、分离过程, 讨论了碰撞过程中碰撞速度、碰撞角度、密度比等参数对碰撞变形过程的影响, 分析了流体桥、旋转角度等因素的变化情况. 关键词: 光滑粒子动力学 微液滴 聚合物液滴 碰撞  相似文献   

6.
《Physica A》1995,214(1):52-67
We consider a collection of droplets during the late stage of phase separation in a closed system. Its coarsening is driven by surface energy and leads asymptotically to a linear growth of the mean droplet volume with time (Ostwald ripening). The droplets grow either from the supersaturated uncondensed phase (coalescence) or by collisions with subsequent fusion (coagulation). The combination of both mechanisms leads asymptotically to a self-similar evolution of the size distribution of the droplets when the coagulation kernel is homogeneous with degree zero. We calculate the scaled droplet size distribution for Brownian and constant kernel and compare the effects of coagulation with the effects of correlation and screening discussed in the literature. We compare our results for the asymptotic scaled distribution with computer simulations for the combined coalescence and coagulation processes.  相似文献   

7.
Experimental investigation of an isolated droplet burning in a convective flow is reported. Acetone droplets were injected in a steady laminar diffusion counterflow flame operating with methane. Planar laser-induced fluorescence measurements applied to OH radical and acetone was used to measure the spatial distribution of fuel vapour and the structure of the flame front around the droplet. High-magnification optics was used in order to image flow areas with a ratio of 1:1.2. The different combustion regimes of an isolated droplet could be observed from the configuration of the envelope flame to that of the boundary-layer flame, and occurrence of these regimes was found to depend on the droplet Reynolds number. Experimental results were compared with 1D numerical simulations using detailed chemistry for the configuration of the envelope flame. Good agreement was obtained for the radial profile of both OH radical and fuel vapour. Influence of droplet dynamics on the counterflow flame front was also investigated. Results show that the flame front could be strongly distorted by the droplet crossing. In particular, droplets with high velocity led to local extinction of the flame front whereas droplets with low velocity could ignite within the flame front and burn on the oxidiser side. PACS 33.50.-j; 42.62.-b; 47.55.D-; 47.70.Pq; 47.80.Jk  相似文献   

8.
强洪夫  石超  陈福振  韩亚伟 《物理学报》2013,62(21):214701-214701
该文结合了Ott提出的修正连续性方程和Adami改进的动量方程, 对空气中的液滴碰撞问题进行了二维数值模拟. 为有效提高计算精度, 推导了适用于大密度差多相流的人工黏性和人工应力方程. 通过表面张力作用下方形液滴自然变化和空气中两液滴互溶的算例, 验证了算法的有效性; 对不同韦伯数 (8.8, 19.8)、不同碰撞参数 (0, 0.5)下的液滴碰撞过程进行了数值模拟, 并与VOF方法对比,取得了较为一致的结果; 进一步计算多个韦伯数、多个碰撞参数下的液滴碰撞, 得到了空气中二维液滴碰撞结果分布图,与实验结果相符合. 结果表明, 该算法对于求解涉及大密度差多相流的液滴碰撞破碎问题十分有效,而且该方法容易拓展到三维, 从而为进一步模拟火箭发动机的二次雾化过程奠定了基础. 关键词: 光滑粒子流体动力学 大密度差 多相流 液滴碰撞  相似文献   

9.
This research conducted microgravity experiments to investigate phenomena appearing around a droplet existing outside the flame-spread limit. n-Decane droplets are tethered at intersections of SiC fibers. The flame spreads to two- or three-interactive droplets to heat a droplet placed outside the flame-spread limit of the interactive droplets. The cool-flame appearance during the flame spread over droplets was detected using different methods. The droplet diameter was measured with a back illumination to evaluate the vaporization-rate constant and to judge whether the cool flame appears or not. The temperature around the droplet was measured by the thin-filament pyrometry using a near-infrared camera to detect the temperature rise due to cool-flame appearance. The infrared radiation distribution from the combustion products was measured using a mid-wave infrared camera to judge the cool-flame appearance. The results show that a cool flame appears around the droplet existing outside the hot-flame-spread limit and the vaporization completes with the cool flame if the heat input from the hot flame is sufficiently large. This type of flame spread is called hot-to-cool flame spread. The definition of flame spread should be extended considering the cool flame.  相似文献   

10.
Ultrasound is an emerging and promising method for demulsification, which is highly affected by acoustic parameters and emulsion properties. Herein, a series of microscopic and dehydration experiments are carried out to investigate the parameter optimization of ultrasonic separation. The results show that the optimal acoustic parameters highly depend on the emulsion properties. For low frequency ultrasonic standing waves (USWs), mechanical vibrations not only facilitate droplet collision and coalescence, but also disperse the surfactant absorbed on the interface to decrease the interfacial strength. Therefore, low frequency ultrasound is suitable for separating emulsions with high viscosity and high interfacial strength. Increasing the energy density to produce moderate cavitation can increase demulsification efficiency. However, excessive cavitation results in secondary emulsification. In high frequency USWs, the droplets migrate directionally and form bandings, thereby promoting droplet coalescence. Therefore, high frequency ultrasound is favorable for separating emulsions with low dispersed phase content and small droplet size. Increasing the energy density can accelerate the aggregation of droplets, however, excessive energy density causes acoustic streaming that disturbs the aggregated droplets, resulting in reduced demulsification efficiency. This work presents rules for acoustic parameter optimization, further advancing industrial applications of ultrasonic separation.  相似文献   

11.
Combustion experiments of fuel droplet array in fuel vapor-air mixture were performed at microgravities to investigate growth mechanism of group combustion of fuel droplets. A 10-droplet array was inserted into the test section filled with a saturated fuel vapor-air mixture as a simple model of prevaporized sprays. Gas equivalence ratio of the fuel vapor-air mixture was regulated by the test section temperature. n-Decane droplets of 0.8 mm in the initial diameter were suspended at the crossing points of 10 sets of X-shaped suspenders. The first droplet was ignited by a hot wire to initiate flame spread along a fuel droplet array. Flame spread speed was obtained from the history of the leading edge position of a spreading flame. Effects of droplet spacing and gas equivalence ratio on the flame spreading behavior and the flame spread speed were examined. The droplet spacing and the gas equivalence ratio were varied from 1.6 to 10.2 mm and from 0.2 to 0.7, respectively. The gas equivalence ratio has little effect on the relationship between the flame spreading behavior and the droplet spacing. The flame spread speed increases as the increase in the gas equivalence ratio at all droplet spacings. The influence of the gas equivalence ratio on the flame spread speed becomes strong as the increase in the droplet spacings. The flame spread speed increases as the increase in the droplet spacing, and then decreases. The maximum flame spread speed appears in the range from 2.4 to 3 mm at all gas equivalence ratios.  相似文献   

12.
Autoignition and early flame behavior of a spherical cluster of 49 monodispersed droplets in a high-temperature air were examined in microgravity. The monodispersed suspended-droplet cluster (MSDC) model with which both droplet spacing and initial droplet diameter were well-controlled was developed, and the solidified-fuel fiber-suspension technique was utilized for making the MSDC model. The tested 3D MSDC models had the HCP (hexagonal closest packing) structure. Individual flames, which enveloped each droplet, or group flame, which enveloped the whole droplet cluster, were formed immediately after ignition. The flame changed from the group flame to a cluster of the individual flames either with increasing the droplet spacing or decreasing the initial droplet diameter. Each of the individual flames merged into the group flame with the lapse of time. Burning sphere diameter decreased at the beginning, and then increased. The transition from the individual flames to the group flame occurred around the time period at which the burning sphere diameter reached its minimum. The time period at which the burning sphere diameter reached its maximum was delayed and the expansion rate of the burning sphere was enhanced with decreasing the droplet spacing or with increasing the initial droplet diameter.  相似文献   

13.
The paper presents the experimental research findings for the integral characteristics of processes developing when two-phase liquid droplets collide in a heated gas medium. The experiments were conducted in a closed heat exchange chamber space filled with air. The gas medium was heated to 400–500 °C by an induction system. In the experiments, the size of initial droplets, their velocities and impact angles were varied in the ranges typical of industrial applications. The main varied parameter was the percentage of vapor (volume of bubbles) in the droplet (up to 90% of the liquid volume). The droplet collision regimes (coalescence, bounce, breakup, disruption), size and number of secondary fragments, as well as the relative volume fraction of vapor bubbles in them were recorded. Differences in the collision regimes and in the distribution of secondary fragments by size were identified. The areas of liquid surface before and after the initial droplet breakup were determined. Conditions were outlined in which vapor bubbles had a significant and, on the contrary, fairly weak effect on the interaction regimes of two-phase droplets.  相似文献   

14.
液滴碰撞Janus颗粒球表面的行为特征   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究液滴碰撞Janus颗粒(双亲性)球表面的独特行为特征,以粒径为5.0 mm铜球为材料制备了Janus颗粒,用直径为2.0 mm的液滴,在韦伯数(We)为2.7,10,20,30的测试情况下对Janus颗粒球表面进行了碰撞实验.结果表明:液滴碰撞Janus颗粒球表面后的运动可分为铺展、回缩、振荡和回弹4个过程.在不...  相似文献   

15.
A series of numerical calculations of flame spread of an n-decane droplet array was conducted at different ambient temperatures (Ta = 300 and 573 K) for S/d0 from 1.5 to 10, where S is the droplet interval and d0 is the initial droplet diameter. The authors compared these numerical results with experimental results under similar conditions at different ambient temperatures for the first time in this study. Good qualitative agreement in flame spread behavior between numerical results and microgravity experiments is obtained. Flame spread mode changed with an increase in S/d0. Also, appearance of the flame spread mode in a stepping-stone manner (Mode III in [Jpn. Soc. Mech. Eng. 68 (672) (2002) 2423]) in a normal temperature environment was verified by numerical calculations and microgravity experiments, although it was not predicted in the theoretical analysis. In addition, good qualitative agreement of flame spread rate Vf versus S/d0 was obtained between numerical and experimental results, although numerical results were at least twice as large as experimental results. Vf had a maximum peak at a specific S/d0 for a different ambient temperature. Employment of improved reaction model and consideration for thermal radiation heat transfer are expected to produce quantitatively better results. An increase in surface temperature of unburned droplets and the development of a flammable gas layer around the droplets were promoted in a high-temperature environment, due to an increase in heat transfer from ambient air to the droplet. As a result, Vf was increased by the higher ambient temperature, suggesting that ambient temperature plays a significant role both in the flame spread mode and the flame spread rate through promotion of a flammable gas layer around unburned droplets.  相似文献   

16.
The burning and extinction characteristics of isolated small nonane droplets are examined in a buoyant convective environment and in an environment with no external axial convection (as created by doing experiments at low gravity) to promote spherical droplet flames. The ambience is air and a mixture of 30%O2/70%He to assess the influence of soot formation. The initial droplet diameter (Do) ranges from 0.4 to 0.95 mm. Measurements are reported of the extinction diameter and time to extinction, and of the evolution of droplet diameter, flame diameter, soot shell diameter, burning rate, and broadband radiative emissions.In a buoyancy-free environment for air larger droplets burn slower than smaller droplets for the range of Do examined, which is attributed to the influence of soot. In the presence of a buoyant flow in air, no influence of Do is observed on the burning rate while the buoyant flames are still heavily sooting. The effect of Do is believed to be due to a combination of dominance of the nonluminous, nonsooting, portion of the buoyant flame around the forward half of the droplet on heat transport and the secondary role of the luminous wake portion of the flame. In a non-sooting helium inert at low gravity, no effect of Do is found on the evolution of droplet diameter.Flame extinction is observed only in the 30%O2/70%He ambience. For all of the observations, extinction appears to occur before the disappearance of the droplet which is then followed by a period of evaporation. The extinction diameter and time to extinction increases with Do and an empirical correlation is presented for these two variables.  相似文献   

17.
This research conducted microgravity experiments on the flame spread over droplet-cloud elements with strong droplet interaction aboard Kibo on the ISS. The droplet-cloud element represents a local droplet pattern appearing in randomly distributed droplet clouds near the group-combustion-excitation limit and consists of small-droplet-spacing droplets and large-droplet-spacing droplets. As droplet-cloud elements, we used four n-decane droplets, Droplets C, B, A and L, placed at fiber intersections of two-dimensional SiC-fiber lattice with a 4-mm fiber interval in a combustion chamber. The flame spreads over the droplet-cloud element in order of Droplets C, B, A and L. The position of Droplet L relative to Droplet A was varied to investigate the flame-spread-limit distribution around burning Droplet A. The position of Droplet B relative to Droplet A was varied to investigate the effect of two-droplet interaction between Droplets B and A on the flame spread to Droplet L. The position of Droplet C relative to Droplet B was also varied to investigate the effect of three-droplet interaction among Droplets C, B and A. The results shows that in the case with the strong interaction by two or three interactive droplets, the high-temperature region is enlarged by the droplet interaction, centers near the center of mass of the interactive droplets and plays an important role in the flame-spread-limit distribution. Since the burning lifetime of Droplet A is finite, the flame-spread time from burning Droplet A to Droplet L is limited by burning lifetime of Droplet A and is less than 80% of the burning lifetime of Droplet A, which increases with the interactive effect. The flame-spread-limit distance from the center of mass of the interactive droplets increases with the burning lifetime.  相似文献   

18.
The transient convective burning of n-octane droplets interacting within single-layer arrays in a hot gas flow perpendicular to the layer is studied numerically, with considerations of droplet surface regression, deceleration due to the drag of the droplets, internal liquid motion, variable properties, non-uniform liquid temperature and surface tension. Infinite periodic arrays, semi-infinite periodic arrays with one row of droplets (linear array) or two rows of droplets, and finite arrays with nine droplets with centers in a plane are investigated. All arrays are aligned orthogonal to the free stream direction. This paper compares the behavior of semi-infinite periodic arrays and finite arrays with the behavior of previously studied infinite periodic arrays. Furthermore, it identifies the critical values of the initial Damköhler number for bifurcations in flame behavior at various initial droplet spacing for all these arrays. The initial flame shape is either an envelope flame or a wake flame as determined by the initial Damköhler number, the array configuration and the initial droplet spacing. The critical initial Damköhler number separating initial wake flames from initial envelope flames decreases with increasing interaction amongst droplets at intermediate droplet spacing (when the number of rows in the array increases or the initial droplet spacing decreases for a specific number of rows in the array). In the transient process, an initial wake flame has a tendency to develop from a wake flame to an envelope flame, with the moment of wake-to-envelope transition advanced for the increasing interaction amongst droplets at intermediate droplet spacing. For the array with nine droplets with centers in a plane, the droplets at different types of positions have different critical initial Damköhler number and different wake-to-envelope transition time for initial wake flame.  相似文献   

19.
《中国物理 B》2021,30(5):54703-054703
Partial coalescence is a complicated flow phenomenon. In the present study, the coalescence process is simulated with the volume of fluid(VOF) method. The numerical results reveal that a downward high-velocity region plays a significant role in partial coalescence. The high-velocity region pulls the droplet downward continuously which is an important factor for the droplet turning into a prolate shape and the final pinch-off. The shift from partial coalescence to full coalescence is explained based on the droplet shape before the pinch-off. With the droplet impact velocity increasing, the droplet shape will get close to a sphere before the pinch-off. When the shape gets close enough to a sphere, the partial coalescence shifts to full coalescence. The effect of film thickness on the coalescence process is also investigated. With large film thickness,partial coalescence happens, while with small film thickness, full coalescence happens. In addition, the results indicate that the critical droplet impact velocity increases with the increase of surface tension coefficient but decreases with the increase of viscosity and initial droplet diameter. And there is a maximum critical Weber number with the increase of surface tension coefficient and initial droplet diameter.  相似文献   

20.
A mathematical model of steady laminar flame propagation through a suspension of liquid droplets was proposed, and numerical calculations within the framework of this model were performed. The model is constructed based on one-dimensional differential equations of the theory of laminar flames in homogeneous gaseous mixtures in conjunction with the theory of droplet burning in uniform monodisperse suspensions. The chemical process was described using a multistage kinetic scheme. A comparison of model predictions with the available experimental data demonstrated satisfactory agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号