首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Water, sprayed in the form of tiny droplets, has emerged as a potential fire suppressant after the halon compounds such as trifluorobromomethane (CF3Br, Halon 1301) were banned by the Montreal protocol. The size distribution of the water droplet plays a crucial role in the effectiveness of the water spray in fire suppression. A numerical investigation of the influence of size distribution of a polydisperse water spray on extinction of counterflow diffusion flames is presented in this paper. This study uses laminar finite rate model with reduced CHEMKIN chemistry for numerical simulations. The discrete phase, namely the water spray, is simulated using Lagrangian Discrete Phase Modelling approach. In this work, the polydispersity of water spray is taken into account in the numerical simulation by a suitable Rosin–Rammler distribution. Results obtained from numerical simulation are validated with the experimental results reported in the literature. This study demonstrates that the representation of the polydisperse spray by a monodisperse spray (with droplet diameter same as the SMD of the polydisperse spray) in numerical simulations is not always justified and it leads to deviation from the experimental results. The effects of number mean diameter and spread parameter on the efficacy of flame suppression are investigated for polydisperse sprays. A comprehensive comparison is done between the effectiveness of monodisperse and polydisperse water sprays. An optimum droplet diameter is obtained for monodisperse sprays for which the effectiveness of the spray is maximum. The effects of evaporation Damköhler number and Stokes number of water droplets on flame suppression have also been explained.  相似文献   

2.
A numerical investigation of the interaction between a spray flame and an acoustic forcing of the velocity field is presented in this paper. In combustion systems, a thermoacoustic instability is the result of a process of coupling between oscillations in heat released and acoustic waves. When liquid fuels are used, the atomisation and the evaporation process also undergo the effects of such instabilities, and the computational fluid dynamics of these complex phenomena becomes a challenging task. In this paper, an acoustic perturbation is applied to the mass flow of the gas phase at the inlet and its effect on the evaporating fuel spray and on the flame front is investigated with unsteady Reynolds averaged Navier-Stokes numerical simulations. Two flames are simulated: a partially premixed ethanol/air spray flame and a premixed pre-vaporised ethanol/air flame, with and without acoustic forcing. The frequencies used to perturb the flames are 200 and 2500 Hz, which are representative for two different regimes. Those regimes are classified based on the Strouhal number St = (D/U)ff: at 200 Hz, St = 0.07, and at 2500 Hz, St = 0.8. The exposure of the flame to a 200 Hz signal results in a stretching of the flame which causes gas field fluctuations, a delay of the evaporation and an increase of the reaction rate. The coupling between the flame and the flow excitation is such that the flame breaks up periodically. At 2500 Hz, the evaporation rate increases but the response of the gas field is weak and the flame is more stable. The presence of droplets does not play a crucial role at 2500 Hz, as shown by a comparison of the discrete flame function in the case of spray and pre-vaporised flame. At low Strouhal number, the forced response of the pre-vaporised flame is much higher compared to that of the spray flame.  相似文献   

3.
Instantaneous measurements of temperature, equivalence ratio, and major species were performed along a one-dimensional probe volume using simultaneous Raman/Rayleigh scattering in an unconfined turbulent lean-premixed swirling methane/air flame. Temperature was determined from Rayleigh scattering and the major species, CO2, O2, N2, CH4, H2O, and H2 from Raman scattering. Effective Rayleigh cross-sections were corrected using the local chemical composition obtained from Raman scattering. These experiments were conducted to investigate the compositional structure of a lean-premixed swirling flame in detail and to complement previous measurements of the underlying flow field. The flame was classified within a revised regime diagram at the cross-over between corrugated flames and thin reaction zones. Instantaneous temperature profiles varied significantly showing shapes ranging from laminar-like flamelets to mixing between reacted fluid elements and secondary air. Different thermo-kinetic states could be assigned to the inner and outer recirculation zones and to the inner and outer mixing layers. Linked to published velocity data of this flame, the present multi-scalar data are useful for validation of numerical simulations.  相似文献   

4.
In the present work, nonpremixed temporally evolving planar spray jet flames are simulated using both direct numerical simulation (DNS) and the composition transported probability density function (TPDF) method. The objective is to assess the performance of various mixing and evaporation source term distribution models which are required to close the PDF transport equation in spray flames. Quantities which would normally be provided to the TPDF solver by spray models and turbulence models are provided from the DNS: the mean flow velocity, turbulent diffusivity, mixing frequency, and cell-mean evaporation source term. Two cases with different Damköhler numbers (Da) are considered. The low Da case (Da-) features extinction followed by reignition while extinction in the high Da case (Da+) is insignificant. The TPDF modelling considers two mixing models: interaction by exchange with the mean (IEM) and Euclidean minimum spanning trees (EMST). Three models for distribution of the evaporation source terms are considered: EQUAL which distributes them in proportion to notional particles’ mass weight, NEW which creates new particles of pure fuel, and SAT which distributes the sources preferentially to notional particles close to saturation. It is found that the IEM model overpredicts the extinction when used with any evaporation model for both Da- and Da+ cases. The EMST model captures well the trend for extinction and reignition for the Da- case when it is coupled with the EQUAL evaporation model, but it overpredicts the extinction when coupled with the NEW or SAT evaporation model. For the Da+ case, all evaporation models reasonably capture the flame dynamics when coupled with EMST. The flame temperature in the mixture fraction space was examined to further assess the model performance. In general the EMST model results in narrow PDFs with little conditional fluctuation, while the IEM model produces bimodal PDFs with burning and partial extinction branches.  相似文献   

5.
Experimental and numerical simulation results are reported of partially-premixed cellular tubular flames. Parametric measurements across stretch rate and equivalence ratio are taken by chemiluminescent imaging and are presented for the first time. Select hybrid cases with both cellular and non-cellular flame structures are examined with laser-induced spontaneous Raman scattering. Results are spatially resolved in two dimensions and radial interpolations of reaction and extinction zones are compared to numerical simulations using multicomponent transport and detailed chemical kinetics. Experimental cell structures and extinction zones are well predicted by numerical simulation, with discrepancies of temperature and H2O and temperature primarily observed in locations with moderate and high mole fractions of CO2. A novel cellular structure, denoted as a “split-cell” flame, is reported for the first time with both chemiluminescent imaging and Raman scattering. Results indicate that partially-premixed flames are valuable as experimental and numerical benchmarks to advance fundamental combustion research.  相似文献   

6.
Cleavage of disulfide bonds is a common method used in linking peptides to proteins in biochemical reactions. The structures, internal rotor potentials, bond energies, and thermochemical properties (ΔfH°, S°, and Cp(T)) of the S–S bridge molecules CH3SSOH and CH3SS(=O)H and the radicals CH3SS?=O and C?H2SSOH that correspond to H‐atom loss are determined by computational chemistry. Structure and thermochemical parameters (S° and Cp(T)) are determined using density functional Becke, three‐parameter, Lee–Yang–Parr (B3LYP)/6‐31++G (d, p), B3LYP/6‐311++G (3df, 2p). The enthalpies of formation for stable species are calculated using the total energies at B3LYP/6‐31++G (d, p), B3LYP/6‐311++G (3df, 2p), and the higher level composite CBS–QB3 levels with work reactions that are close to isodesmic in most cases. The enthalpies of formation for CH3SSOH, CH3SS(=O)H are ?38.3 and ?16.6 kcal mol?1, respectively, where the difference is in enthalpy RSO–H versus RS(=O)–H bonding. The C–H bond energy of CH3SSOH is 99.2 kcal mol?1, and the O–H bond energy is weaker at 76.9 kcal mol?1. Cleavage of the weak O–H bond in CH3SSOH results in an electron rearrangement upon loss of the CH3SSO–H hydrogen atom; the radical rearranges to form the more stable CH3SS· = O radical structure. Cleavage of the C–H bond in CH3SS(=O)H results in an unstable [CH2SS(=O)H]* intermediate, which decomposes exothermically to lower energy CH2 = S + HSO. The CH3SS(=O)–H bond energy is quite weak at 54.8 kcal mol?1 with the H–C bond estimated at between 91 and 98 kcal mol?1. Disulfide bond energies for CH3S–SOH and CH3S–S(=O)H are low: 67.1 and 39.2 kcal mol?1. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The paper deals with the numerical study of heat and mass transfer in the process of direct evaporation air cooling in the laminar flow of forced convection in a channel between two parallel insulated plates with alternating wet and dry zones along the length. The system of Navier–Stokes equations and equations of energy and steam diffusion are being solved in two-dimensional approximation. At the channel inlet, all thermal gas-dynamic parameters are constant over the cross section, and the channel walls are adiabatic. The studies were carried out with varying number of dry zones (n = 0–16), their relative length (s/l = 0–1) and Reynolds number Re = 50–1000 in the flow of dry air (φ0 = 0) with a constant temperature at the inlet (T 0 = 30 °C). The main attention is paid to optimization analysis of evaporation cell characteristics. It is shown that an increase in the number of alternating steps leads to an increase in the parameters of thermal and humid efficiency. With an increase in Re number and a decrease in the extent of wet areas, the efficiency parameter reduces.  相似文献   

8.
Medical grade propylene–ethylene (P–E) copolymer was irradiated by gamma rays. The radicals generated in the irradiated P–E copolymer were identified by using electron spin resonance (ESR) technique and the structural changes in the polymer were monitored with Fourier transform infrared spectroscopy (FTIR). The ESR spectra were analysed with computer simulations. The ESR studies show the formation of macro (~CH2–?H–CH2~), peroxy (POO˙), methyl and acyl (R–?=O) radicals and the asymmetric doublet, characteristic of peroxy radicals in the case of the sample irradiated at low dose (1 Mrad) and high doses (30 and 40 Mrad), respectively. The FTIR spectra of irradiated P–E copolymer indicate an increase in the concentration of peroxide groups. The absorption bands of –C=O and –OH groups were increased and the decline in the intensity of –CH3 group absorption band is reported.  相似文献   

9.
CO2, CH4, and N2O are recognised as the most important greenhouse gases, the concentrations of which increase rapidly through human activities. Space-borne integrated path differential absorption lidar allows global observations at day and night over land and water surfaces in all climates. In this study we investigate potential sources of measurement errors and compare them with the scientific requirements. Our simulations reveal that moderate-size instruments in terms of telescope aperture (0.5–1.5 m) and laser average power (0.4–4 W) potentially have a low random error of the greenhouse gas column which is 0.2% for CO2 and 0.4% for CH4 for soundings at 1.6 μm, 0.4% for CO2 at 2.1 μm, 0.6% for CH4 at 2.3 μm, and 0.3% for N2O at 3.9 μm. Coherent detection instruments are generally limited by speckle noise, while direct detection instruments suffer from high detector noise using current technology. The wavelength selection in the vicinity of the absorption line is critical as it controls the height region of highest sensitivity, the temperature cross-sensitivity, and the demands on frequency stability. For CO2, an error budget of 0.08% is derived from our analysis of the sources of systematic errors. Among them, the frequency stability of ± 0.3 MHz for the laser transmitter and spectral purity of 99.9% in conjunction with a narrow-band spectral filter of 1 GHz (FWHM) are identified to be challenging instrument requirements for a direct detection CO2 system operating at 1.6 μm. PACS 42.68.Wt; 95.75.Qr  相似文献   

10.
This study characterizes the structure and dynamics of a confined, bluff-body-stabilized turbulent premixed flame by simultaneously employing formaldehyde (CH2O) and hydroxyl (OH) planar laser-induced fluorescence (PLIF) and particle image velocimetry (PIV), at a rate of 10?kHz. The large field-of-view (>170 cm2) CH2O-PLIF is enabled by use of a burst-mode laser delivering 10-kHz pulse trains of 355-nm at 350 mJ/pulse, resulting in a CH2O signal-to-noise of 47:1 during PIV seed flow. Two cases illustrative of the CH2O dynamics are presented. A statistically stationary turbulent combustion case highlights the development of the CH2O layers in space and time. Notably, presumed CH2O-vortex dynamic interactions are observed where the CH2O accumulates broadly near the Kelvin–Helmholtz vortex core and remains thin near the vortex braid, contributing to a distribution of CH2O preheat zone thickness from 1 to 10 times of the calculated laminar value. The second case highlights the CH2O dynamics during a self-excited combustion instability. Two short-duration increases in CH2O are produced during the elevated velocity portion of the acoustic cycle. The first CH2O increase is caused by the reactant mass flux impulse as the velocity starts to increase. The second CH2O increase is the result of the upper and lower shear layers merging downstream and entraining fresh reactants that burn in intense, distributed regions inside the wake. Estimating the time delay between the CH2O and the heat release, it is suggested that the secondary CH2O increase may contribute to damping of the acoustic instability, because of its out-of-phase relationship with pressure, while the first CH2O increase appears to drive the instability.  相似文献   

11.
Three-dimensional direct numerical simulations (DNS) were carried out to investigate the impact of evaporation of droplets on the autoignition process under decaying turbulence. The droplets were taken as point sources and were tracked in a Lagrangian manner. Three cases with the same initial equivalence ratio but different initial droplet size were simulated and the focus was to examine the influence of the droplet evaporation process on the location of autoignition. It was found that an increase in the initial droplet size results in an increase in the autoignition time, that highest reaction rates always occur at a specific mixture fraction ξMR, as in purely gaseous flows, and that changes in the initial droplet size did not affect the value of ξMR. The conditional correlation coefficient between scalar dissipation rate and reaction rates was only mildly negative, contrary to the strongly negative values for purely gaseous autoigniting flows, possibly due to the continuous generation of mixture fraction by the droplet evaporation process that randomizes both the mixture fraction and the scalar dissipation fields.  相似文献   

12.
This study aims principally to assess numerically the impact of methanol mass transport (i.e., evaporation/condensation across the acoustic bubble wall) on the thermodynamics and chemical effects (methanol conversion, hydrogen and oxygenated reactive species production) of acoustic cavitation in sono-irradiated aqueous solution. This effect was revealed at various ultrasound frequencies (from 213 to 1000 kHz) and acoustic intensities (1 and 2 W/cm2) over a range of methanol concentrations (from 0 to 100%, v/v). It was found that the impact of methanol concentration on the expansion and compression ratios, bubble temperature, CH3OH conversion and the molar productions inside the bubble is frequency dependent (either with or without consideration of methanol mass transport), where this effect is more pronounced when the ultrasound frequency is decreased. Alternatively, the decrease in acoustic intensity decreases clearly the effect of methanol mass transport on the bubble sono-activity. When methanol mass transfer is eliminated, the decrease of the bubble temperature, CH3OH conversion and the molar yield of the bubble with the rise of methanol concentration was found to be more amortized as the wave frequency is reduced from 1 MHz to 213 kHz, compared to the case when the mass transport of methanol is taken into account. Our findings indicate clearly the importance of incorporating the evaporation and condensation mechanisms of methanol throughout the numerical simulations of a single bubble dynamics and chemical activity.  相似文献   

13.
We present an improved numerical scheme for numerical simulations of low Mach number turbulent reacting flows with detailed chemistry and transport. The method is based on a semi-implicit operator-splitting scheme with a stiff solver for integration of the chemical kinetic rates, developed by Knio et al. [O.M. Knio, H.N. Najm, P.S. Wyckoff, A semi-implicit numerical scheme for reacting flow II. Stiff, operator-split formulation, Journal of Computational Physics 154 (2) (1999) 428–467]. Using the material derivative form of continuity equation, we enhance the scheme to allow for large density ratio in the flow field. The scheme is developed for direct numerical simulation of turbulent reacting flow by employing high-order discretization for the spatial terms. The accuracy of the scheme in space and time is verified by examining the grid/time-step dependency on one-dimensional benchmark cases: a freely propagating premixed flame in an open environment and in an enclosure related to spark-ignition engines. The scheme is then examined in simulations of a two-dimensional laminar flame/vortex-pair interaction. Furthermore, we apply the scheme to direct numerical simulation of a homogeneous charge compression ignition (HCCI) process in an enclosure studied previously in the literature. Satisfactory agreement is found in terms of the overall ignition behavior, local reaction zone structures and statistical quantities. Finally, the scheme is used to study the development of intrinsic flame instabilities in a lean H2/air premixed flame, where it is shown that the spatial and temporary accuracies of numerical schemes can have great impact on the prediction of the sensitive nonlinear evolution process of flame instability.  相似文献   

14.
Large eddy simulations (LES) of the Sandia/Sydney swirl burners (SM1 and SMA1) and the Sandia/Darmstadt piloted jet diffusion flame (Flame D) are performed. These flames are part of the database of turbulent reacting flows widely considered as benchmark test cases for validating turbulent-combustion models. In the simulations presented in this paper, the subgrid scale (SGS) closure model adopted for turbulence-chemistry interactions is based on the transport filtered density function (FDF) model. In the FDF model, the transport equation for the joint probability density function (PDF) of scalars is solved. The main advantage of this model is that the filtered reaction rates can be exactly computed. However, the density field, computed directly from the FDF solver and needed in the hydrodynamic equations, is noisy and causes numerical instability. Two numerical approaches that yield a smooth density field are examined. The two methods are based on transport equations for specific sensible enthalpy (hs) and RT, where R is the gas constant and T is the temperature. Consistency of the two methods is assessed in a bluff-body configuration using Reynolds averaged Navier-Stokes (RANS) methodology in conjunction with the transported PDF method. It is observed that the hs method is superior to the RT method. Both methods are used in LES of the SM1 burner. In the near-field region, the hs method produces better predictions of temperature. However, in the far-field region, both methods show deviation from data. Simulations of the SMA1 burner and Flame D are also presented using the hs method. Some deficiencies are seen in the predictions of the SMA1 burner that may be related to the simple chemical kinetics model and mixing model used in the simulations. Simulations of Flame D show good agreement with data. These results indicate that, while further improvements to the methodology are needed, the LES/FDF method has the potential to accurately predict complex turbulent flames.  相似文献   

15.
Sulfur–Oxygen containing hydrocarbons are formed in oxidation of sulfides and thiols in the atmosphere, on aerosols and in combustion processes. Understanding their thermochemical properties is important to evaluate their formation and transformation paths. Structures, thermochemical properties, bond energies, and internal rotor potentials of methyl sulfinic acid CH3S(?O)OH, its methyl ester CH3S(?O)OCH3 and radicals corresponding to loss of a hydrogen atom have been studied. Gas phase standard enthalpies of formation and bond energies were calculated using B3LYP/6‐311G (2d, p) individual and CBS‐QB3 composite methods employing work reactions to further improve accuracy of the ${\Delta} _{{\bf f}} H_{{\bf 298}}^{{\bf o}} $ . Molecular structures, vibration frequencies, and internal rotor potentials were calculated. Enthalpies of the parent molecules CH3S(?O)OH and CH3S(?O)OCH3 are evaluated as ?77.4 and ?72.7 kcal mol?1 at the CBS? QB3 level; Enthalpies of radicals C?H2? S(?O)? OH, CH3? S?(?O)2, C?H2? S(?O)? OCH3 and CH3? S(?O)? OC?H2 (CBS‐QB3) are ?25.7, ?52.3, ?22.8, and ?26.8 kcal mol?1, respectively. The CH3C(?O)O—H bond dissociation energy is of 77.1 kcal mol?1. Two of the intermediate radicals are unstable and rapidly dissociate. The CH3S(?O)? O. radical obtained from the parent CH3? S(?O)? OH dissociates into methyl radical (${\bf CH}_{{\bf 3}}^{{\bf .}} $ ) plus SO2 with endothermicity (ΔHrxn) of only 16.2 kcal mol?1. The CH3? S(?O)? OC?H2 radical dissociates into CH3? S?=O and CH2=O with little or no barrier and an exothermicity of ?19.9 kcal mol?1. DFT and the Complete Basis Set‐QB3 enthalpy values are in close agreement; this accord is attributed to use of isodesmic work reactions for the analysis and suggests this combination of B3LYP/work reaction approach is acceptable for larger molecules. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Soil samples containing water with known stable isotopic compositions were prepared. The soil water was recovered by using vacuum/heat distillation. The experiments were held under different conditions to control rates of water evaporation and water recovery. Recoveries, δ18O and δ2H values of the soil water were determined. Analyses of the data using a Rayleigh distillation model indicate that under the experimental conditions only loosely bound water is extractable in cases where the recovery is smaller than 100?%. Due to isotopic exchange between vapour and remaining water in the micro channels or capillaries of the soil matrix, isotopic fractionation may take place under near-equilibrium conditions. This causes the observed relationship between δ2H and δ18O of the extracted water samples to have a slope close to 8. The results of this study may indicate that, in arid zones when soil that initially contains water dries out, the slope of the relationship between δ2H and δ18O values should be close to 8. Thus, a smaller slope, as observed by some groundwater and soil water samples in arid zones, may be caused by evaporation of water before the water has entered the unsaturated zone.  相似文献   

17.
Using a frequency-doubled dye laser, simultaneous high-resolution spectra of14CH2O and12CH2O between 290 and 345 nm were measured. About 30 lines with spectral selectivities for14C≳50 were found. Photolyses on one such line at 326.94 nm of a dilute mixture of14CH2O in natural CH2O gave one-step enrichment factors of up to 150, with μg yields of enriched product. Since a factor of 150 in14C concentration corresponds to ∼7.2 half lives or 41,000 years, laser enrichment of archaeological samples, especially when combined with direct detection methods of14C abundance measurement, can greatly improve the range of radiocarbon dating.  相似文献   

18.
《Surface science》1986,176(3):L863-L872
Our analytic Morse-potential model of chemisorption based on bond-order conservation [Surface Sci. 150 (1985) L115; 163 (1985) L645, L730] has been used to calculate the heats of chemisorption of various diatomic AB and polyatomic ABx species (coordinated via A) and to estimate the activation barriers for their dissociation and transformations. Examples include adspecies such as CHx, NHx, OHx, and possible intermediates and elementary steps of reactions such as CO + O → CO2, NO + N → N2 + O, N2 + H2 → NH3, H2 + O2 → H2O, and CO + H2 → CH4. Both the qualitative projections and numerical estimates are in good agreement with experiment. In particular, it is shown that (1) the most reactive adspecies should be the most weakly bound, and (2) the recombination activation barrier should primarily depend on (and may even be close to) the heat of chemisorption of the weaker bound partner.  相似文献   

19.
Three-dimensional n-heptane spray flames in a swirl combustor are investigated by means of direct numerical simulation (DNS) to provide insight into realistic spray evaporation and combustion as well as relevant modeling issues. The variable-density, low-Mach number Navier–Stokes equations are solved using a fully conservative and kinetic energy conserving finite difference scheme in cylindrical coordinates. Dispersed droplets are tracked in a Lagrangian framework. Droplet evaporation is described by an equilibrium model. Gas combustion is represented using an adaptive one-step irreversible reaction. Two different cases are studied: a lean case that resembles a lean direct injection combustion, and a rich case that represents the primary combustion region of a rich-burn/quick-quench/lean-burn combustor. The results suggest that premixed combustion contribute more than 70% to the total heat release rate, although diffusion flame have volumetrically a higher contribution. The conditional mean scalar dissipation rate is shown to be strongly influenced, especially in the rich case. The conditional mean evaporation rate increases almost linearly with mixture fraction in the lean case, but shows a more complex behavior in the rich case. The probability density functions (PDF) of mixture fraction in spray combustion are shown to be quite complex. To model this behavior, the formulation of the PDF in a transformed mixture fraction space is proposed and demonstrated to predict the DNS data reasonably well.  相似文献   

20.
This study examines the effect of turbulence on the ignition of multicomponent surrogate fuels and its role in modifying preferential evaporation in multiphase turbulent spray environments. To this end, two zero-dimensional droplet models are considered that are representative of asymptotic conditions of diffusion limit and the distillation limit are considered. The coupling between diffusion, evaporation and combustion is first identified using a scale analysis of 0D homogeneous batch reactor simulations. Subsequently, direct numerical simulations of homogeneously dispersed multicomponent droplets are performed for both droplet models, in decaying isotropic turbulence and at quiescent conditions to examine competing time scale effects arising from evaporation, ignition and turbulence. Results related to intra-droplet transport and effects of turbulence on autoignition and overall combustion are studied using an aviation fuel surrogate. Depending on the characteristic scale, it is shown that turbulence can couple through modulation of evaporation time or defer the ignition phase as a result of droplet cooling or gas-phase homogenization. Both preferential evaporation and turbulence are found to modify the ignition delay time, up to a factor of two. More importantly, identical droplet ignition behavior in homogeneous gas phase can imply fundamentally different combustion modes in heterogeneous environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号