共查询到20条相似文献,搜索用时 15 毫秒
1.
J.M. Jones L.I. Darvell T.G. Bridgeman M. Pourkashanian A. Williams 《Proceedings of the Combustion Institute》2007,31(2):1955-1963
Potassium, a key nutrient in biomass growth, contributes to problematic ash chemistry and corrosion in combustion. This study seeks to examine the behaviour and fate of potassium in biomass combustion under high temperature flame conditions. A model to predict potassium release is presented. Short rotation willow coppice was treated to reduce metals, by water-washing, and remove them, by demineralisation, and then potassium was doped into the demineralised sample. The resultant fuels have been studied for their combustion behaviours in methane–air flames, both as suspended, moving particles, and as stationary, supported particles, using high speed digital video. In the latter case, potassium release was measured simultaneously by emission spectroscopy. In both experiments, potassium was seen to catalyse devolatilisation, and for the stationary particles it was possible to detect potassium catalysis in the char burn-out rates. Demineralised willow was seen to melt in the flame and combustion resembled heavy oil combustion, rather than solid fuel combustion. The residual char was extremely slow to burn-out. In the potassium-doped particles, potassium was seen to evolve over three regimes, devolatilisation, char burn-out and, less significantly, during ash cooking. The first two evolution processes have been modelled using an apparent first order devolatilisation rate for the first stage, and a KOH evaporation model for the second stage. 相似文献
2.
Effect of ultrasonic pretreatment on kinetics of gelatin hydrolysis by collagenase and its mechanism
Gelatin is a mixture of soluble proteins prepared by partial hydrolysis of native collagen. Gelatin can be enzymatically hydrolyzed to produce bioactive hydrolysates. However, the preparation of gelatin peptide with expected activity is usually a time-consuming process. The production efficiency of gelatin hydrolysates needs to be improved. In present work, effect of ultrasonic pretreatment on kinetic parameters of gelatin hydrolysis by collagenase was investigated based on an established kinetic model. With ultrasonic pretreatment, reaction rate constant and enzyme inactivation constant were increased by 27.5% and 27.8%, respectively. Meanwhile, hydrolysis activation energy and enzyme inactivation energy were reduced by 36.3% and 43.0%, respectively. In order to explore its possible mechanism, influence of sonication on structural properties of gelatin was determined using atomic force microscopy, particle size analyzer, fluorescence spectroscopy, protein solubility test and Fourier transform infrared spectroscopy. Moreover, hydrogen peroxide was used as a positive control for potential sonochemical effect. It was found that reduction of gelatin particle size was mainly caused by physical effect of ultrasound. Increased solubility and variation in β-sheet and random coil elements of gelatin were due to sonochemical effect. Both physical and chemical effects of sonication contributed to the change in α-helix and β-turn structures. The current results suggest that ultrasound can be potentially applied to stimulate the production efficiency of gelatin peptides, mainly due to its effects on modification of protein structures. 相似文献
3.
Simultaneous measurements of the release of atomic sodium, particle diameter and particle temperature for a single burning coal particle 总被引:1,自引:0,他引:1
P.J. van Eyk P.J. Ashman Z.T. Alwahabi G.J. Nathan 《Proceedings of the Combustion Institute》2009,32(2):2099-2106
The temporal history of the release of volatile alkali species during coal combustion is a significant, but poorly understood factor in the fouling and corrosion of heat transfer surfaces within industrial coal-fired boilers. We present new results of the simultaneous measurement of particle temperature, particle size and the atomic sodium concentration in the plume of a burning coal particle. During the char phase, the sodium concentration in the plume was found to be linearly dependent on the inverse of particle diameter, but during the ash phase the sodium concentration was found to decay exponentially with decreasing particle temperature. The centreline decay of Na within the plume above the burning particle consists of one region controlled by a first order chemical reaction and a second region controlled by diffusion. 相似文献
4.
Chemistry and kinetics of chemical vapor deposition of pyrolytic carbon from ethanol 总被引:2,自引:0,他引:2
A. Li S. Zhang B. Reznik S. Lichtenberg G. Schoch O. Deutschmann 《Proceedings of the Combustion Institute》2011,33(2):1843-1850
Synthesis of pyrolytic carbon as a matrix for carbon fiber reinforced carbon composites by chemical vapor infiltration (CVI) is studied experimentally and numerically using the oxygen-containing precursor ethanol. The effects of residence time on microstructure and deposition rate of pyrolytic carbon are investigated. A short residence time is found to favor the formation of high-textured pyrolytic carbon. The evolutions of microstructure and deposition rate of pyrolytic carbon are compared with those of carbon deposited from methane. Compared to methane, ethanol exhibits a much higher deposition rate of pyrolytic carbon with similar microstructures. Pyrolysis of ethanol is modeled using a two-dimensional flow model coupled with a detailed gas-phase reaction mechanism involving 261 species taking part in 1177 reversible reactions. Reaction rate analysis reveals that C3-hydrocarbons are the most important intermediate species contributing to the maturation of gas-phase composition. A comparison of the kinetic predictions with equilibrium calculations demonstrates that the CVD reactor applied is operated far away from equilibrium. 相似文献
5.
Laser Induced Breakdown Spectroscopic (LIBS) technique was used to detect calcium and silicon in an unknown sample. In this method plasma was generated by Nd∶YAG laser of wavelength 1 064 nm with energy 400 mJ and pulse duration between 5~10 ns. The method was applied for the qualitative as well as quantitative analysis. In the qualitative analysis, the electron number density (Ne) of plasma containing calcium and silicon is determined showing that Ne of neutral particles is equivalent to 1016 (cm-3) whereas for ionized particles it is 1017 (cm-3). Plasma temperature is measured using Boltzmann plot method which must be greater than 10 000 k. Intensity ratio method is used for the quantitative analysis shows various elements in abundance with calcium and silicon in majority. 相似文献
6.
The structural, electronic and elastic properties of potassium hexatitanate (K2Ti6O13) whisker were investigated using first-principles calculations. The calculated cell parameters of K2Ti6O13 including lattice constants and atomic positions are in good agreement with the experimental data. The obtained formation enthalpy (−61.1535 eV/atom) and cohesive energy (−137.4502 eV/atom) are both negative, showing its high structural stability. Further analysis of the electronic structures shows that the potassium hexatitanate is a wide-band semiconductor. Within K2Ti6O13 crystal, the TiO bonding interactions are stronger than that of KO, while no apparent KTi bonding interactions can be observed. The structural stability of K2Ti6O13 was closely associated with the covalent bond interactions between Ti (d) and O (p) orbits. Further calculations on elastic properties show that K2Ti6O13 is a high stiffness and brittle material with small anisotropy in shear and compression. 相似文献
7.
To obtain greater knowledge on the stability of phenolic acids for the application of FSFP ultrasound technique in the extraction, the sonochemical effects of ultrasonic factors were investigated. The kinetic model and mechanism of degradation reaction were developed and identified by FT-IR and HPLC-ESIMS. The results showed that caffeic and sinapic acids were degraded under FSFP ultrasound treatment. The ultrasonic temperature, frequency, sweep range, sweep cycle, and pulse ratio were proved to be important factors in affecting the degradation rates of caffeic and sinapic acids. Relatively high temperature, frequency away from the resonance frequency, narrow sweep range, moderate sweep cycle, and relatively low or high pulse ratio were recommended to maintain high stability of caffeic and sinapic acids. The degradation kinetics of these two phenolic acids under FSFP ultrasound treatment were conformed to zeroth-order reaction at 10–50 °C. Moreover, FSFP ultrasound had a stronger sonochemical effect on sinapic acid than caffeic acid. The FT-IR and HPLC-ESIMS proved that decomposition and polymerization reactions occurred when caffeic and sinapic acids were subjected to FSFP ultrasound. Degradation products, such as the corresponding decarboxylation products and their dimers, were tentatively identified. 相似文献
8.
Xuebin Wang Adewale Adeosun Zhongfa Hu Zhenghang Xiao Dishant Khatri Tianxiang Li Houzhang Tan Richard L. Axelbaum 《Proceedings of the Combustion Institute》2019,37(3):2705-2713
In this work, the effects of feedstock water leaching on ignition and PM1.0 emission during biomass combustion were studied, for the first time, in a Hencken flat-flame burner reactor (HFFBR). A high-speed video camera and high-resolution electrical low-pressure impactor were respectively employed to diagnose ignition and PM1.0 along the height of the burner. The mineral composition of PM10+ was measured as a function of height to demonstrate the potassium release during the early stage of biomass combustion. The results show that water leaching does not change the functional group of the biomass (straw), but increases the BET surface area and pore volume. Water leaching removes 90% of the potassium and all the chlorine, reducing the same amount of PM1.0 emission. The effect of water leaching on ignition delay observed in the flat-flame burner reactor agrees with the delay of biomass-devolatilization in TGA. Profiles of mineral composition in the PM10+ with height shows that a large amount of the potassium is released before biomass ignition. This indicates that, at realistic heating rates, the catalytic promotion of water-soluble minerals on biomass ignition is primarily through promoting devolatilization. The ignition delay of biomass particles caused by water leaching is more significant at lower temperature, e.g., ignition is delayed from 20 to 24?ms at 1000?°C, and from 9.2 to 10.2?ms at 1300?°C. 相似文献
9.
Madison A. Kelley Sean R. Smith Jason M. Porter 《Proceedings of the Combustion Institute》2019,37(3):3061-3069
A novel single particle experiment was developed to allow for detailed char gasification measurements in pure steam at temperatures from 1000 °C to 1400 °C and pressures from 1 bar to 15 bar. A coal-derived activated carbon was thoroughly characterized with respect to its composition, physical structure, and reactivity revealing properties consistent with chars reported in the literature. The single particle approach allowed for the boundary and initial conditions to be well known and for the mass of the particle to be accurately measured before and after testing to provide high-quality conversion data. The resulting conversion data were analyzed using the random pore model and the shrinking core model, of which the random pore model provided the best fit. Apparent activation energies were calculated using the random pore model which provided values ranging from 57.1 kJ/mol to 129 kJ/mol which are nominally half of the magnitude of the values reported in the literature under kinetically controlled conditions, thus demonstrating that regime II conditions were present. Additionally, the activation energies decreased with increasing temperature further demonstrating the presence of regime II conditions. The calculated reaction order ranged from 0 to 0.5 and decreased with increasing pressure agreeing well with literature values and trends. 相似文献
10.
In this paper, the ultrasound-assisted leaching of iron from boron carbide waste-scrap was investigated and the optimization of different influencing factors had also been performed. The factors investigated were acid concentration, liquid-solid ratio, leaching temperature, ultrasonic power and frequency. The leaching of iron with conventional method at various temperatures was also performed. The results show the maximum iron leaching ratios are 87.4%, 94.5% for 80 min-leaching with conventional method and 50 min-leaching with ultrasound assistance, respectively. The leaching of waste-scrap with conventional method fits the chemical reaction-controlled model. The leaching with ultrasound assistance fits chemical reaction-controlled model, diffusion-controlled model for the first stage and second stage, respectively. The assistance of ultrasound can greatly improve the iron leaching ratio, accelerate the leaching rate, shorten leaching time and lower the residual iron, comparing with conventional method. The advantages of ultrasound-assisted leaching were also confirmed by the SEM-EDS analysis and elemental analysis of the raw material and leached solid samples. 相似文献
11.
Clay-hydrogel nanocomposites are suitable material for mitigating the pollution/environmental impact because of their high adsorption capacity. In this study, the synthesis of polyacrylamide/bentonite hydrogel nanocomposite was assisted by ultrasound through successful incorporation of nanobentonite as filler and cross-linker into polyacrylamide framework. The adsorbent was characterized by FTIR, XRD, BET, SEM-EDX, and TEM in order to observe structural changes and sorption interactions. The effect of adsorbent dose, contact time, initial metal ion concentration and pH on the sequestration of Pb2+ and Cd2+ was analyzed. The adsorbent removed more than 95% Pb2+ and Cd2+ within first 20 min, which corresponds to relatively high pseudo-first order rate constant, k1 (0.240 for Pb2+ and 0.253 1/min for Cd2+) and pseudo-second order rate constant, k2 (0.031 for Pb2+ and 0.033 g/mg/min for Cd2+). The isotherm and kinetics modeling data were best described by Freundlich isotherm over the entire concentration range and pseudo-second order rate equation, respectively. The thermodynamic studies implied spontaneous and endothermic nature of adsorption process. The maximum adsorption capacity (138.33 for Pb2+ and 200.41 mg/g for Cd2+) determined using Langmuir model along with a good regeneration potential depicts that polyacrylamide/bentonite hydrogel nanocomposite could be used effectively for Pb2+ and Cd2+ uptake from aqueous solution. 相似文献
12.
W. Beck A.Ya. Karasik J. Arvanitidis D. Ricard 《The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics》2000,10(1):131-140
High-temperature persistent spectral hole-burning (PSHB), up to room temperature, has been observed in a Eu
3+
-doped aluminosilicate glass using a high peak-power nanosecond dye laser. Spontaneous refilling as well as thermal cycling
measurements show that at least two mechanisms, a fast and a slow one, are involved in our sample. We suggest that the fast
or “easy” component may correspond to a non-photochemical local rearrangement of the host or to photoreduction of the Eu
3+
ions and that the second one leading to very stable photoproducts may correspond to transfer of an electron over a sizable
distance through a several-step process. The mechanisms we suggest agree with light-induced hole refilling measurements. Line
broadening mechanisms are discussed and the temperature-dependent part of the homogeneous width and of the spectral shift
is interpreted in terms of a two-phonon (Raman) process involving pseudo-local phonons.
Received 28 July 1999 相似文献
13.
14.
Using pulsed atomic beam technique and a surface ionization ion microscope, the desorption kinetics and the surface diffusion of the alkalis potassium, rubidium and cesium were investigated on a Si(111)7 × 7-surface at extremely low alkali coverages. In the temperature range 1120 … 800 K, the mean adsorption lifetime τ(T) = τ0 · exp(Edesi/kT) and the mean diffusion length x(T) - defined in the equilibrium between adsorption, diffusion and desorption - were measured. From these data the diffusion constant D(T) = D0 · exp(-Ediff/kT) was obtained as D = x?2/τ. For temperatures T ? 750 K, the diffusion constant was calculated from nonstationary alkali concentration profiles using the Boltzmann-Matano method. From the temperature dependence of these quantities the parameters of desorption (Edes,i τ0) and surface diffusion (Ediff, D0) for K, Rb and Cs on Si(111) were obtained. The values of Ediff and D0 are comparably high and may be interpreted by non-localized diffusion according to a model proposed by Bonzel (Surf. Sci. 21 (1970) 45). 相似文献
15.
Remote preparation of atomic and field cluster states from a pair of tri-partite GHZ states 下载免费PDF全文
We propose two simple and resource-economical schemes for remote preparation of four-partite atomic as well as cavity field cluster states.In the case of atomic state generation,we utilize simultaneous resonant and dispersive interactions of the two two-level atoms at the preparation station.Atoms involved in these interactions are individually pair-wise entangled into two different tri-partite GHZ states.After interaction,the passage of the atoms through a Ramsey zone and their subsequent detection completes the protocol.However,for field state generation we first copy the quantum information in the cavities to the atoms by resonant interactions and then adapt the same method as in the case of atomic state generation.The method can be generalised to remotely generate any arbitrary graph states in a straightforward manner. 相似文献
16.
The diffraction of sound from an edge of a thin chipboard panel was measured in an anechoic chamber, and compared to simulations based on the diffraction formulation developed by Svensson et al. [Svensson UP, Fred RI, Vanderkooy J. An analytic secondary source model of edge diffraction impulse responses. J Acoust Soc Am 1999;106(5):2331-44]. The measurements and simulations were performed for a line of receiver positions below the panel to include cases for which the direct sound had an unobstructed propagation path to the receivers, as well as cases for which the direct sound was occluded by the panel. Comparison of the measured and simulated responses is provided in both the time and frequency-domains, and shows that the differences between them are small over the entire audible frequency range. This case study verifies that the applied diffraction-modeling method gives accurate results, and that the assumptions of ideal source and wedge characteristics inherent in the method do not preclude its use in simulations of realistic scenarios. 相似文献
17.
The adsorption kinetics (by thermal desorption spectroscopy) and adsorption dynamics (by molecular beam scattering) have been determined for a number of alkanes, methanol, thiophene, and water on a silica wafer—SiO2/Si(1 1 1). No indications for bond activation were present, i.e., all probe molecules adsorb molecularly obeying 1st order kinetics. The coverage-dependent heat of adsorption has been determined accordingly. The adsorption dynamics are precursor-mediated with Kisliuk-like shapes of the adsorption probabilities at low impact energies and adsorbate-assisted adsorption at large impact energies. 相似文献
18.
Adsorption isotherms and kinetics of methylene blue on a low-cost adsorbent recovered from a spent catalyst of vinyl acetate synthesis 总被引:1,自引:0,他引:1
Zhengyong Zhang Zebiao Zhang Y. Fernández Hao Niu Jinhui Peng Libo Zhang Shenghui Guo 《Applied Surface Science》2010,256(8):2569-2801
A regenerated activated carbon used as catalyst support in the synthesis of vinyl acetate has been tested as a low-cost adsorbent for the removal of dyes. After a thorough textural characterization of the regenerated activated carbon, its adsorption isotherms and kinetics were determined using methylene blue as model compound at different initial concentrations. Both Langmuir and Freundlich isotherm models were developed and then compared. It was found that the equilibrium data were best represented by the Langmuir isotherm model. The kinetic data were fitted to pseudo-first-order, pseudo-second-order and intraparticle diffusion models, and it was found that the best fitting corresponded to the pseudo-second-order kinetic model. The results showed that this novel adsorbent had a high adsorption capacity, making it suitable for use in the treatment of methylene blue enriched wastewater. 相似文献
19.
This work presents simulations and experimental measurements of two negative refraction metamaterial samples at microwave frequencies. The two samples are composed of Four-Triangle Split Resonant Rings and Metal Wires (FTSRRs–MWs) with different cell sizes which are found to play an important role in the location of resonant frequency. The small cell sample is chosen to recover the effective index by utilizing the simulative permittivity and permeability, as well as the angle detection from the experimental data. The experimental data shows good agreement with the simulation result. 相似文献
20.
”Eau de graphene” from a KC8 graphite intercalation compound prepared by a simple mixing of graphite and molten potassium 下载免费PDF全文
George Bepete Ferdinand Hof Kai Huang Katerina Kampioti Eric Anglaret Carlos Drummond Alain Pénicaud 《固体物理学:研究快报》2016,10(12):895-899
We synthesized KC8 by simply mixing molten potassium and graphite at 180 °C under inert atmosphere. The KC8 shows typical shiny bronze color, Raman characteristics and XRD pattern of an efficiently intercalated stage 1 GIC, and is of sufficient quality to produce fully exfoliated graphenide solutions in tetrahydrofuran (THF) and subsequently single layer graphene in water as ”eau de graphene” (EdG). The evolution of absorption and Raman spectroscopic signatures of the EdG as a function of processing conditions give key indications on the number of layers of the graphene flakes dispersed in EdG. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim) 相似文献