首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Strained two-phase pulverised coal flames in a counterflow configuration are investigated numerically. Three operating conditions with different coal-to-primary-air ratios and inlet velocities were evaluated in order to establish different flame regimes. At first, the two-phase flow of the fully resolved reference cases is calculated solving the transport equation for the species and directly evaluating the reaction rates. Different flame structures are identified using the heat release rate and the chemical explosive mode as markers, showing that complex structures with a combination of lean premixed and non-premixed flames can be observed in strained counterflow coal flames. In addition to the fully resolved simulation, the suitability of the Flamelet-Progress Variable (FPV) model is investigated. Both premixed and non-premixed tables are employed. At first, the suitability of the look-up tables is evaluated by means of an a priori analysis, using the fully resolved simulations as reference solutions, showing that the non-premixed flamelet table correctly predicts the structure of the strained coal flames, while the premixed table shows sensible deviations in terms of temperature and species, especially at rich conditions. Finally, the a posteriori analysis shows that the fully coupled FPV model with a non-premixed flamelet look-up table can accurately predict strained coal flames.  相似文献   

2.
This study focuses on the modelling of turbulent lifted jet flames using flamelets and a presumed Probability Density Function (PDF) approach with interest in both flame lift-off height and flame brush structure. First, flamelet models used to capture contributions from premixed and non-premixed modes of the partially premixed combustion in the lifted jet flame are assessed using a Direct Numerical Simulation (DNS) data for a turbulent lifted hydrogen jet flame. The joint PDFs of mixture fraction Z and progress variable c, including their statistical correlation, are obtained using a copula method, which is also validated using the DNS data. The statistically independent PDFs are found to be generally inadequate to represent the joint PDFs from the DNS data. The effects of Zc correlation and the contribution from the non-premixed combustion mode on the flame lift-off height are studied systematically by including one effect at a time in the simulations used for a posteriori validation. A simple model including the effects of chemical kinetics and scalar dissipation rate is suggested and used for non-premixed combustion contributions. The results clearly show that both Zc correlation and non-premixed combustion effects are required in the premixed flamelets approach to get good agreement with the measured flame lift-off heights as a function of jet velocity. The flame brush structure reported in earlier experimental studies is also captured reasonably well for various axial positions. It seems that flame stabilisation is influenced by both premixed and non-premixed combustion modes, and their mutual influences.  相似文献   

3.
A multi-stream Flamelet Progress Variable (FPV) model, specifically developed for coal combustion, is proposed. The model accounts for the different fuel streams associated with the volatile and char burnout products. The applicability of the new FPV model is investigated in a laminar stagnation pulverized coal flame. The flame considered is a premixed mixture of CH4, O2 and N2, carrying pulverized coal particles, stabilized in an impinging wall. Spontaneous emissions of OH*, CH* and C2* are measured to identify the flame. The 1D numerical simulations of the experimental conditions are able to reproduce the main features of the flame. The applicability of the multi-stream FPV model to coal combustion is further evaluated with the a posteriori analysis of the FPV results, comparing the results with a reference model, where the species are fully transported and the chemistry directly evaluated. Then, with the budget analysis, the influence of the control variables used to build the look-up table is assessed by examining the conditional contributions to the overall transport terms of scalar quantities (e.g. species, temperature). The results of both analyses show that the proposed multi-stream FPV model can accurately predict the main features of coal combustion, with only minor issues related to the manifold used to build the look-up table.  相似文献   

4.
Auto-ignition of turbulent non-premixed systems is encountered in practical devices such as diesel internal combustion engines. It remains a challenge for modellers, as it exhibits specific features such as unsteadiness, flame propagation and combustion far from stoichiometric conditions. In this paper, a two-dimensional DNS database of an igniting H2/O2/N2 mixing layer, including detailed chemistry and transport, is extensively post-processed in order to gain physical insight into the flame structure and dynamics during auto-ignition. The results are used as a framework for the development of a generalized flame surface density modelling approach by integrating the equations over all possible mixture fraction values. The mean reaction rate is split into two contributions: a generalized flame surface density and a mean reaction rate per unit generalized flame surface density. The unsteadiness of the ignition phenomenon is accounted for via a generalized progress variable. Closures for the generalized surface average of the reaction rate and for the generalized progress variable are proposed, and the modelling approach is tested a priori versus the DNS data. The use of a laminar database for the chemistry coupled to the mean turbulent field via the generalized progress variable shows very promising results, capturing the correct ignition delay and the premixed peak in the turbulent mean heat release rate evolution. This allows confidence in future inclusion and validation of this approach in a RANS-CFD code.  相似文献   

5.
An inhomogeneous, non-premixed, stationary, turbulent, reacting model flow that is accessible to direct numerical simulation (DNS) is described for investigating the effects of mixing on reaction and for testing mixing models. The mixture-fraction-progress-variable approach of Bilger is used, with a model, finite-rate, reversible, single-step thermochemistry, yielding non-trivial stationary solutions corresponding to stable reaction and also allowing local extinction to occur. There is a uniform mean gradient in the mixture fraction, which gives rise to stationarity as well as a flame brush. A range of reaction zone thicknesses and Damkohler numbers are examined, yielding a broad spectrum of behaviour, including thick and thin flames, local extinction and near equilibrium. Based on direct numerical simulations, results from the conditional moment closure (CMC) and the quasi-equilibrium distributed reaction (QEDR) model are evaluated. Large intermittency in the scalar dissipation leads to local extinction in the DNS. In regions of the flow where local extinction is not present, CMC and QEDR based on the local scalar dissipation give good agreement with the DNS.M This article features multimedia enhancements available from the supplemental page in the online journal.  相似文献   

6.
In the present work, three-dimensional turbulent non-premixed oblique slot-jet flames impinging at a wall were investigated using direct numerical simulation (DNS). Two cases are considered with the Damköhler number (Da) of case A being twice that of case B. A 17 species and 73-step mechanism for methane combustion was employed in the simulations. It was found that flame extinction in case B is more prominent compared to case A. Reignition in the lower branch of combustion for case A occurs when the scalar dissipation rate relaxes, while no reignition occurs in the lower branch for case B due to excessive scalar dissipation rate. A method was proposed to identify the flame quenching edges of turbulent non-premixed flames in wall-bounded flows based on the intersections of mixture fraction and OH mass fraction iso-surfaces. The flame/wall interactions were examined in terms of the quenching distance and the wall heat flux along the quenching edges. There is essentially no flame/wall interaction in case B due to the extinction caused by excessive turbulent mixing. In contrast, significant interactions between flames and the wall are observed in case A. The quenching distance is found to be negatively correlated with wall heat flux as previously reported in turbulent premixed flames. The influence of chemical reactions and wall on flow topologies was identified. The FS/U and FC/U topologies are found near flame edges, and the NNN/U topology appears when reignition occurs. The vortex-dominant topologies, FC/U and FS/S, play an increasingly important role as the jet turbulence develops.  相似文献   

7.
A carrier-phase direct numerical simulation (CP-DNS) of pulverized coal combustion in a mixing layer is performed, considering three NOx formation mechanisms (fuel-NOx, thermal-NOx and prompt-NOx). Detailed analyses, including reaction path analysis, chemical timescale analysis, and a priori and budget analyses are conducted to investigate the NOx production mechanisms and the performance of the flamelet model. Considering the high computational cost of CP-DNS, this work focuses on the early phase governed by devolatilization, where char reactions are less important. The reaction path analyses show that the principal thermal-NO reaction contributes to the net consumption of NO in fuel-bound nitrogen pulverized coal flames, which is essentially different from fuel-nitrogen-free flames. The chemical timescale analyses show that the production rates of NOx species are faster than those of major species, which confirms the suitability of the flamelet tables. The a priori analyses show that the gas temperature and major/intermediate species can be predicted well by the flamelet model, while the NOx species show significant discrepancies in certain regions. Finally, the budget analyses explain why the flamelet model performs differently for major/intermediate and NOx species.  相似文献   

8.
A priori and a posteriori studies for large eddy simulation of the compressible turbulent infinitely fast reacting shear layer are presented. The filtered heat release appearing in the energy equation is unclosed and the accuracy of different models for the filtered scalar dissipation rate and the conditional filtered scalar dissipation rate of the mixture fraction in closing this term is analyzed. The effect of different closures of the subgrid transport of momentum, energy and scalars on the modeling of the filtered heat release via the resolved fields is also considered. Three explicit models of these subgrid fluxes are explored, each with an increasing level of reconstruction and all of them regularized by a Smagorinsky-type term. It is observed that a major part of the error in the prediction of the conditional filtered scalar dissipation comes from the unsatisfactory modeling of the filtered dissipation itself. The error can be substantial in the turbulent fluctuation (rms) of the dissipation fields. It is encouraging that all models give good predictions of the mean and rms density in a posteriori LES of this flow with realistic heat release corresponding to large density change. Although a posteriori results show a small sensitivity to subgrid modeling errors in the current problem, extinction–reignition phenomena involving finite-rate chemistry would demand more accurate modeling of the dissipation rates. A posteriori results also show that the resolved fields obtained with the approximate reconstruction using moments (ARM) agree better with the filtered direct numerical simulation since the level of reconstruction in the modeled subfilter fluxes is increased.  相似文献   

9.
As a renewable fuel, hydrogen (H2) may play an increasingly important role in the development and control of piston and gas turbine engines to achieve zero carbon emissions. Predictive modeling of H2-fueled combustion processes requires a clear understanding of differential diffusion (DD) due to the high diffusivity of H2. On the assumption that turbulent mixing is a far more dominant process than molecular mixing, DD effects are typically neglected in turbulent combustion simulations to reduce modeling complications. While this assumption is reasonable for hydrocarbon fuels, it is less valid for H2 combustion, where DD is significant. In this work, two three-dimensional direct numerical simulations of temporally evolving turbulent H2 jet flames with and without considering DD are performed and compared with laminar flamelet solutions to assess DD effects under turbulent conditions. The emphasis is placed on assessing the suitability of classical mixture fraction Z and Bilger mixture fraction ZBilger as conditioning variables for non-premixed turbulent combustion modeling through analyzing DD effects on flame structure, chemical reactions, and tangential diffusion (TD). Furthermore, the persistence of DD effects under turbulent conditions and the suitability of a conventional DD parameter are investigated by comparing the turbulent flames to laminar flamelet solutions. It is found that conditioning the thermochemical state on ZBilger helps to capture DD effects and mitigate the relative contribution of TD, which gives ZBilger advantages over Z when employing flamelet modeling. Due to close coupling between DD and local chemical reactions, DD can affect the turbulent/laminar flames in the form of thermal effects due to the change in flame temperature, chemical effects due to the change in chemical reactions, and transport effects due to multiple species with varying diffusivities that could result in the difference between Z and ZBilger. While the transport effects are suppressed, significant chemical and thermal effects of DD still persist under turbulent conditions, which indicates that the DD parameter is probably unsuitable for comprehensively characterizing and assessing DD effects on the structure of turbulent non-premixed flames.  相似文献   

10.
The probabilty density function (PDF) of the mixture fraction is of integral importance to a large number of combustion models. Here, a novel modelling approach for the PDF of the mixture fraction is proposed which employs dissipation elements. While being restricted to the commonly used mean and variance of the mixture fraction, this model approach individually considers contributions of the laminar regions as well as the turbulent core and the turbulent/non-turbulent interface region. The later region poses a highly intermittent part of the flow which is of high relevance to the non-premixed combustion of pure hydrocarbon fuels. The model assumptions are justified by means of the gradient trajectory based analysis of high fidelity direct numerical simulation (DNS) datasets of two turbulent inert configurations and a turbulent non-premixed jet flame. The new dissipation element based model is validated against the DNS datasets and a comparison with the beta PDF is presented.  相似文献   

11.
This work investigates the structure of a diffusion flame in terms of lengthscales, scalar dissipation, and flame orientation by using large eddy simulation. This has been performed for a turbulent, non-premixed, piloted methane/air jet flame (Flame D) at a Reynolds-number of 22,400. A steady flamelet model, which was represented by artificial neural networks, yields species mass fractions, density, and viscosity as a function of the mixture fraction. This will be shown to suffice to simulate such flames. To allow to examine scalar dissipation, a grid of 1.97 × 106 nodes was applied that resolves more than 75% of the turbulent kinetic energy. The accuracy of the results is assessed by varying the grid-resolution and by comparison to experimental data by Barlow, Frank, Karpetis, Schneider (Sandia, Darmstadt), and others. The numerical procedure solves the filtered, incompressible transport equations for mass, momentum, and mixture fraction. For subgrid closure, an eddy viscosity/diffusivity approach is applied, relying on the dynamic Germano model. Artificial turbulent inflow velocities were generated to feature proper one- and two-point statistics. The results obtained for both the one- and two-point statistics were found in good agreement to the experimental data. The PDF of the flame orientation shows the tilting of the flame fronts towards the centerline. Finally, the steady flamelet approach was found to be sufficient for this type of flame unless slowly reacting species are of interest.  相似文献   

12.
An a priori study based on direct numerical simulation (DNS) of a non-isothermal turbulent plane jet has been carried out in order to analyse the role of the small-scales of turbulence on thermal radiation. Filtered DNS and large eddy simulation (LES) without subgrid-scale (SGS) model have been estimated for the radiative heat transfer. The comparison of the results highlights the subgrid-scale influence over the filtered radiation quantities, such as the radiative intensity and the radiative emission. The influence of the optical thickness is also studied. It is shown that the subgrid-scales are not significant near the centerline of the jet, where the radiative heat transfer is more important, and therefore that the SGS can be neglected in this configuration. However, when the optical thickness increases, the SGS become relevant and SGS modeling may be needed.  相似文献   

13.
This paper describes the dynamics of non-premixed flames responding to bulk velocity fluctuations, and compares the dynamics of the flame sheet position and spatially integrated heat release to that of a premixed flame. The space–time dynamics of the non-premixed flame sheet in the fast chemistry limit is described by the stoichiometric mixture fraction surface, extracted from the solution of the
-equation. This procedure has some analogies to premixed flames, where the premixed flame sheet location is extracted from the G = 0 surface of the solution of the G-equation. A key difference between the premixed and non-premixed flame dynamics, however, is the fact that the non-premixed flame sheet dynamics are a function of the disturbance field everywhere, and not just at the reaction sheet, as in the premixed flame problem. A second key difference is that the non-premixed flame does not propagate and so flame wrinkles are convected downstream at the axial flow velocity, while wrinkles in premixed flames convect downstream at a vector sum of the flame speed and axial velocity. With the exception of the flame wrinkle propagation speed, however, we show that that the solutions for the space–time dynamics of the premixed and non-premixed reaction sheets in high velocity axial flows are quite similar. In contrast, there are important differences in their spatially integrated unsteady heat release dynamics. Premixed flame heat release fluctuations are dominated by area fluctuations, while non-premixed flames are dominated by mass burning rate fluctuations. At low Strouhal numbers, the resultant sensitivity of both flames to flow disturbances is the same, but the non-premixed flame response rolls off slower with frequency. Hence, this analysis suggests that non-premixed flames are more sensitive to flow perturbations than premixed flames at O(1) Strouhal numbers.  相似文献   

14.
The statistical behaviour and closure of sub-grid scalar fluxes in the context of turbulent premixed combustion have been assessed based on an a priori analysis of a detailed chemistry Direct Numerical Simulation (DNS) database consisting of three hydrogen-air flames spanning the corrugated flamelets (CF), thin reaction zones (TRZ) and broken reaction zones (BRZ) regimes of premixed turbulent combustion. The sub-grid scalar fluxes have been extracted by explicit filtering of DNS data. It has been found that the conventional gradient hypothesis model is not appropriate for the closure of sub-grid scalar flux for any scalar in the context of a multispecies system. However, the predictions of the conventional gradient hypothesis exhibit a greater level of qualitative agreement with DNS data for the flame representing the BRZ regime. The aforementioned behaviour has been analysed in terms of the properties of the invariants of the anisotropy tensor in the Lumley triangle. The flames in the CF and TRZ regimes are characterised by a pronounced two-dimensional anisotropy due to strong heat release whereas a three-dimensional and more isotropic behaviour is observed for the flame located in the BRZ regime. Two sub-grid scalar flux models which are capable of predicting counter-gradient transport have been considered for a priori DNS assessment of multispecies systems and have been analysed in terms of both qualitative and quantitative agreements. By combining the latter two sub-grid scalar flux closures, a new modelling strategy is suggested where one model is responsible for properly predicting the conditional mean accurately and the other model is responsible for the correlations between model and unclosed term. Detailed physical explanations for the observed behaviour and an assessment of existing modelling assumptions have been provided. Finally, the classical Bray–Moss–Libby theory for the scalar flux closure has been extended to address multispecies transport in the context of large eddy simulations.  相似文献   

15.
In this paper it is investigated whether the Flame Surface Density (FSD) model, developed for turbulent premixed combustion, is also applicable to stratified flames. Direct Numerical Simulations (DNS) of turbulent stratified Bunsen flames have been carried out, using the Flamelet Generated Manifold (FGM) reduction method for reaction kinetics. Before examining the suitability of the FSD model, flame surfaces are characterized in terms of thickness, curvature and stratification.

All flames are in the Thin Reaction Zones regime, and the maximum equivalence ratio range covers 0.1?φ?1.3. For all flames, local flame thicknesses correspond very well to those observed in stretchless, steady premixed flamelets. Extracted curvature radii and mixing length scales are significantly larger than the flame thickness, implying that the stratified flames all burn in a premixed mode. The remaining challenge is accounting for the large variation in (subfilter) mass burning rate.

In this contribution, the FSD model is proven to be applicable for Large Eddy Simulations (LES) of stratified flames for the equivalence ratio range 0.1?φ?1.3. Subfilter mass burning rate variations are taken into account by a subfilter Probability Density Function (PDF) for the mixture fraction, on which the mass burning rate directly depends. A priori analysis point out that for small stratifications (0.4?φ?1.0), the replacement of the subfilter PDF (obtained from DNS data) by the corresponding Dirac function is appropriate. Integration of the Dirac function with the mass burning rate m=m(φ), can then adequately model the filtered mass burning rate obtained from filtered DNS data. For a larger stratification (0.1?φ?1.3), and filter widths up to ten flame thicknesses, a β-function for the subfilter PDF yields substantially better predictions than a Dirac function. Finally, inclusion of a simple algebraic model for the FSD resulted only in small additional deviations from DNS data, thereby rendering this approach promising for application in LES.  相似文献   

16.
The performance of a dynamic subgrid model for the turbulent burning speed of a premixed flame is investigated for a series of idealized test cases where the flame front is wrinkled by a multiple-scale shear flow; a rigorous asymptotic subgrid model is also implemented for comparison. Explicit formulae for the flame wrinkled shape and turbulent speed are available to generate a reference database. The role of the subgrid wrinkling models is to achieve the same overall flame shape and propagation speed in a simulation where only the largest scales of the flow are explicitly accounted for. Very good results are obtained when the subgrid burning speed enhancement is estimated using the asymptotic subgrid model. On the other hand, the dynamic model attempts to exploit the scaling observable in the simulation to extrapolate the turbulent burning speed enhancement in the original system. The performance of this strategy is adequate for some regimes but poor for others; the source of the problem is traced back to the existence of a scaling transition that occurs as the flame propagating speed is adjusted during the large-eddy simulation. A modification to the scaling of the enhanced burning is implemented to account for the existence of the two distinct scaling ranges; it improves significantly the predictions of the dynamic model away from the transition, but results in the near-critical range remain predictably very poor compared with the rigorous asymptotic model results. These conclusions based on a priori performance for the reference steady data are confirmed by comparing unsteady large-eddy and direct simulations. Results based on rigorous mathematical tools are possible here because of the separation of length scales in the special class of idealized flow fields used in this study: their relevance to more realistic flows is also discussed.  相似文献   

17.
Multiple flame regimes are encountered in industrial combustion chambers, where premixed, stratified and non-premixed flame regions may coexist. To obtain a predictive tool for pollutant formation predictions, chemical flame modeling must take into account the influence of such complex flame structure. The objective of this article is to apply and compare two reduced chemistry models on both laminar and turbulent multi-regime flame configurations in order to analyze their capabilities in predicting flame structure and CO formation. The challenged approaches are (i) a premixed flamelet-based tabulated chemistry method, whose thermochemical variables are parameterized by a mixture fraction and a progress variable, and (ii) a virtual chemical scheme which has been optimized to retrieve the properties of canonical premixed and non-premixed 1-D laminar flames. The methods are first applied to compute a series of laminar partially-premixed methane-air counterflow flames. Results are compared to detailed chemistry simulations. Both approaches reproduced the thermal flame structure but only the virtual chemistry captures the CO formation in all ranges of equivalence ratio from stoichiometry premixed flame to pure non-premixed flame. Finally, the two chemical models combined with the Thickened Flame model for LES are challenged on a piloted turbulent jet flame with inhomogeneous inlet, the Sydney inhomogeneous burner. Mean and RMS of temperature and CO mass fraction radial profiles are compared to available experimental data. Scatter data in mixture fraction space and Wasserstein metric of numerical and experimental data are also studied. The analyses confirm again that the virtual chemistry approach is able to account for the impact of multi-regime turbulent combustion on the CO formation.  相似文献   

18.
Coal/biomass co-firing (CBCF) is regarded as one of the sustainable alternatives to reduce emissions from the utilization of fossil fuels. It features complex reacting stages and fuel streams caused by the asynchronous reaction behaviors of coal and biomass particles, which cannot be represented well by the traditional two-mixture-fractions (2Z) coal flamelet/progress variable (FPV) model. To address this issue, we developed an extended FPV model for the CBCF flame in the present study. Firstly, a three-dimensional (3D) point-particle direct numerical simulation (PP-DNS) was conducted to explore the combustion characteristics of the co-firing flame and served as a reference for the model development. Secondly, an extended FPV model was developed by introducing an extra parameter to distinguish the volatiles sources, and the model performance was evaluated by the a priori study as well as comparison with those of the traditional coal-/bio- 2Z-FPV models. The results showed that there were three reacting stages with four fuel streams in the CBCF flame, and their corresponding flame behaviors were obviously different from each other as demonstrated in both the one-dimensional flamelets and 3D PP-DNS solutions. The a priori results showed that the coal-/bio- 2Z-FPV models would give large deviations in the predictions of gas temperature and major species due to the lack of distinguishing the volatiles sources. In contrast, the extended FPV model could well reproduce the flame behaviors (both temperature and species profiles) for different reacting stages with complex fuel streams in the CBCF flame. This validated the extended FPV model and demonstrated its superiority against the traditional 2Z-FPV models.  相似文献   

19.
Recent investigations on a novel multi-regime burner (MRB) configuration showed significant deviations in the CO flame structure compared to the limiting cases of premixed and non-premixed flames. However, a prior analysis revealed that major species and temperature are captured by both limiting cases (Butz et al., Combust. Flame, 2019 [1]). In the present work, large eddy simulations using an artificial thickened flame approach and tabulated chemistry are performed for the MRB configuration. Simulation results are compared to experimental Raman/Rayleigh/CO-LIF and PIV measurements, confirming the applicability of the modeling approach. Further, simulation results are consistent with the aforementioned prior analysis. Special attention is paid to predicting CO by analyzing the conditional flame structure and the effects of local residence time. This combined CO and residence time analysis reveals that local convective and diffusive transport processes should be resolved simultaneously with the unsteady flow, instead of being tabulated. Substantial improvements in CO are achieved when local transport is considered.  相似文献   

20.
高温空气燃烧炉内湍流混合特性的数值研究   总被引:2,自引:0,他引:2  
应用自行研发的三维流动、燃烧、传热和污染物NOx湍流生成的数值模拟程序,对高温空气燃烧实验模型炉进行了湍流扩散燃烧混合特性的数值模拟.数值预报了燃烧室内气体燃料和空气的混合物分数及其湍流脉动的三维分布.数值研究结果表明:在一定的几何条件和气体动力学条件下,高温空气燃烧的湍流混合在更广泛的区域内以较小梯度的进行;混合物分数的脉动主要分布在燃烧区,这表明高温空气燃烧的火焰厚度更大,具有燃烧释热更趋均匀的特性.数值模拟结果与相关的实验结果有相同的规律.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号