首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silica (SiO2) is regarded as one of the most promising anode materials for lithium‐ion batteries due to the high theoretical specific capacity and extremely low cost. However, the low intrinsic electrical conductivity and the big volume change during charge/discharge cycles result in a poor electrochemical performance. Here, hollow silica spheres embedded in porous carbon (HSS–C) composites are synthesized and investigated as an anode material for lithium‐ion batteries. The HSS–C composites demonstrate a high specific capacity of about 910 mA h g?1 at a rate of 200 mA g?1 after 150 cycles and exhibit good rate capability. The porous carbon with a large surface area and void space filled both inside and outside of the hollow silica spheres acts as an excellent conductive layer to enhance the overall conductivity of the electrode, shortens the diffusion path length for the transport of lithium ions, and also buffers the volume change accompanied with lithium‐ion insertion/extraction processes.  相似文献   

2.
The electrochemical performance of carbon materials with a highly ordered nanoporous structure is investigated in two-electrode supercapacitors. The materials were prepared by a templating procedure using a silica matrix (type MCM-48 or SBA-15) with an organized porosity in which carbon was inserted, either by chemical vapor decomposition of propylene or by impregnation with a sucrose solution followed by carbonisation. After the removal of silica, a micro-mesoporous carbon residue is recovered which displays an uniform pore size distribution. Such a well-defined nanostructure is interesting for a fundamental study of the double layer capacitance behavior. The performance of supercapacitors built with electrodes prepared from the templated carbon was tested in acidic, alkaline and organic electrolyte solutions. High values of capacitance in aqueous and organic media were obtained with a rectangular shape of the voltammograms over a wide range of scan rates indicating a quick charge propagation. Especially, the templated carbons prepared by the impregnation of sucrose in MCM-48 display high capacitance values due to the formation of an adequate micro-mesoporous network during their formation. A marked shift of capacitance drop at higher values of frequency is clearly observed for the materials rich in mesopores; the mesopores make easier the diffusion of the ions to the active surface.  相似文献   

3.
Carbon coated MnOx-Ni foam electrodes were successfully prepared using a combined process of hydrogel reaction followed by high-temperature pyrolysis under air or Ar gas conditions. The prepared samples were analyzed by various characterization tools. To evaluate the performances of the carbon coated MnOx-Ni foam electrodes as supercapacitors, cyclic voltammetry (CV), galvanostatic charge–discharge, electrochemical impedance spectroscopy (EIS) and cycle stability were also carried out. The carbon coated MnOx-Ni foam electrodes displayed supercapacitive behavior in 1.0 M KOH with a high specific capacitance value of 354.6 F g−1 at 10 mV s−1. The electrode also exhibited remarkable cycle stability. This research provides a valuable and effective approach to enhance the performance of materials applied as supercapacitors.  相似文献   

4.
通过电化学的方法在钛网上制备了聚吡咯与石墨烯的复合物薄膜,其过程是先在钛网上通过自组装干燥膜法附着上石墨烯氧化物膜,而后采用电化学还原的方法原位还原制备得到石墨烯膜,随后加入吡咯单体,再通过电化学聚合的方法在石墨烯的表面生长聚吡咯,得到的聚吡咯开始以颗粒的形式存在,而后随着聚合的进行得到了链状的聚吡咯.得到的复合膜有高的比表面积和导电性,可以作为电极活性材料用于超级电容器中提供赝电容,结果表明,复合膜作为电极材料的超级电容器拥有高的性能,比电容达400 F/g,并且电极的充放电稳定性高,5000次复合膜充放电循环后比电容还能保留82%,说明该材料适合于超级电容器.  相似文献   

5.
《Current Applied Physics》2014,14(4):603-607
Carbon aerogel (CA) was prepared by a carbonization of resorcinol–formaldehyde (RF) polymer gels, and it was chemically activated with KOH to obtain activated carbon aerogel (ACA) for electrode material for EDLC in organic electrolyte. Coin-type EDLC cells with two symmetrical carbon electrode were assembled using the prepared carbon materials. Electrochemical performance of the carbon electrodes was measured by galvanostatic charge/discharge and cyclic voltammetry methods. Activated carbon aerogel (20.9 F/g) showed much higher specific capacitance than carbon aerogel (7.9 F/g) and commercial activated carbon (8.5 F/g) at a scan rate of 100 mV/s. This indicates that chemical activation with KOH served as an efficient method to improve electrochemical performance of carbon aerogel for EDLC electrode in organic electrolyte. The enhanced electrochemical performance of activated carbon aerogel was attributed to the high effective surface area and the well-developed pore structure with appropriate pore size obtained from activation with KOH.  相似文献   

6.
王桂强  刘洁琼  董伟楠  阎超  张伟 《物理学报》2018,67(23):238103-238103
二维多孔碳材料能够提供较短的电解质扩散通道和较快的电子传输过程,因此在能量转换和储存装置中表现出优异的电化学性能.近年来的理论和实验研究表明,两元素共掺杂可使二维多孔碳材料的电化学性能得到明显提高.因此,共掺杂二维多孔碳材料的制备成为目前的研究热点之一.本文以甲基橙-FeCl3复合物为模板引发剂制备了甲基橙掺杂的聚吡咯纳米管,通过对聚吡咯纳米管与KOH混合物(重量比为1:2)在700 ℃进行热处理,制备了二维石墨烯状氮/硫共掺杂多孔碳纳米片.所制备的氮/硫共掺杂多孔碳纳米片相互连结,形成了多级孔结构.氮气吸附分析表明多级孔结构包含微孔、介孔和大孔,这使所制备的氮/硫共掺杂多孔碳纳米片具有较高的比表面积(1744.58 m2/g)和孔体积(1.01 cm3/g).共掺杂多孔碳纳米片中的掺杂氮以吡啶氮、吡咯氮和季胺氮形式存在,掺杂硫以噻吩硫和氧化态硫形式存在,二者之间的协同效应能够明显改善碳纳米片表面的浸润性,增加表面电化学活性点.这些特征使所制备的氮/硫共掺杂多孔碳纳米片表现出优异的电化学性能.用氮/硫共掺杂多孔碳纳米片制备的量子点敏化太阳能电池对电极,对多硫电解质再生反应的电催化活性与传统PbS对电极相近,所组装电池的光电转换效率可达到4.30%(100 mW/cm2).氮/硫共掺杂多孔碳纳米片作为超级电容器电极材料,以6 M(1 M=1 mol/L)KOH为电解质,电流密度为0.4 A/g,比电容达到312.8 F/g.即使电流密度增加到20 A/g,比电容仍达到200.6 F/g,表明其具有较好的倍率性能.  相似文献   

7.
巫梦丹  周胜林  叶安娜  王敏  张晓华  杨朝晖 《物理学报》2019,68(10):108201-108201
随着科技发展和时代进步,发展质轻便携、安全环保的高性能储能器件变得日趋重要,对柔性固态超级电容器的研究也应运而生.柔性电极材料及电解质的选用是设计柔性固态超级电容器的关键因素,近年来一直是研究的热点.考虑到环境污染及实际需求问题,本文采用中性凝胶电解质对具有高比表面积、良好导电性及取向性的碳纳米管阵列进行包埋处理,所形成的柔性复合薄膜作为电极材料,设计制备三明治结构的柔性超级电容器件.通过改变凝胶电解质中所加入的无机盐电解质种类,调控器件的电化学储能性质.最终在聚乙烯醇PVA-NaCl作为凝胶电解质时,整个器件比容量最高达104.5 mF·cm~(–3),远高于有机离子凝胶与碳管阵列形成的复合器件以及无规分布的碳纳米管与水凝胶形成的复合器件,同时获得了0.034 mW·h·cm~(–3)的最大能量密度,并且具有良好的倍率性能、循环稳定性及抑制自放电的效果,并在高电压1.6 V下依然保持良好的化学稳定性.这种中性凝胶/碳管阵列复合超级电容器件不仅满足了绿色安全、柔性便携的要求,未来在医学可植入器件等领域也具有很好的应用前景.  相似文献   

8.
Herein, core-shell carbon sphere@nickel oxide (Cs@NiO) composites were fabricated by a facile hydrothermal method followed by calcination. The resultant Cs@NiO composites are composed of randomly distributed NiO nanoneedles coated on carbon sphere surfaces, which exhibit the rambutan-like structure. As electrode materials for supercapacitor, the core-shell Cs@NiO delivers a high specific capacitance of 555 F/g at the current density of 1 A/g, and an outstanding rate capability of about 85.6% capacity retention from 1 to 10 A/g. Meanwhile, the capacitance degradation is only 5% after 1000 continuous charge-discharge cycles with a current density of 10 A/g. These excellent electrochemical performances can be attributed to the enhanced electronic conductivity, the improved surface activity and the facilitated charge transportation during charging and discharging process, which are caused by the introduction of carbon sphere and the appropriate structure, respectively.  相似文献   

9.
Carbon xerogels and Ni-doped carbon xerogels prepared by the sol-gel polymerization were examined to reveal the effect of metallic nickel incorporated in carbon matrix on the physicochemical properties of carbon xerogels and their electrochemical performance for supercapacitor electrode in aqueous 6 M KOH solution. As shown by XRD and XPS measurements, the decomposition of nickel precursor in carbon matrix led to the creation of well-crystalline particles of metallic nickel which gave rise to the changes in the morphology, chemical and porous structure of carbon xerogels. Due to the modification of porous structure the surface area increased from 595 m2/g via 632 m2/g up to 660 m2/g for carbon xerogel, 7 wt% and 10 wt% Ni-doped composites, respectively. The enhancement of the surface area occurred along with diminishing the BJH average pore diameter. The value for nickel free xerogel amounted to 11.35 nm, whereas the value of 5.71 nm was measured for 10 wt% Ni xerogel. The changes in the porous and chemical structure created during the formation of carbon-nickel composites as well as the pseudo-capacitive effects arising from the redox reaction of nickel particles present in carbon matrix brought about a significant improvement of electrode capacitance. Electrochemical measurements showed that in comparison with capacitances measured for nickel free electrode (82.1 F/g calculated using the cyclic voltammetry and 88.8 F/g calculated using the galvanostatic charge/discharge method), the respective capacitances for 10 wt% Ni-doped carbon xerogel increased up to 103.0 F/g and 103.4 F/g. These values correspond to 25 and 16% improvement, respectively.  相似文献   

10.
In this paper firstly, Cu (II)-based metal-organic framework (MOF; Cu-bipy-BTC, bipy = 2,2′-bipyridine, BTC = 1,3,5-tricarboxylate) was synthesized using chemical approach and then fabricated hybrid poly ortho aminophenol (POAP)/Cu-bipy-BTC films by electropolymerization of POAP in the presence of Cu-bipy-BTC nanoparticles to serve as the active electrode for electrochemical storage device. Surface analysis and electrochemical analysis have been used for characterization of POAP/Cu-bipy-BTC composite film. Different electrochemical methods including galvanostatic charge–discharge experiments, cyclic voltammetry, and electrochemical impedance spectroscopy are carried out in order to investigate the performance of the system. This work introduces new nanocomposite materials for electrochemical redox capacitors with advantages including ease synthesis, high active surface area, and stability in an aqueous electrolyte.  相似文献   

11.
12.
Hole-rich Li4Ti5O12 composites are synthesized by spray drying using carbon nanotubes as additives in precursor solution, subsequently followed calcinated at high temperature in air. The structure, morphology, and texture of the as-prepared composites are characterized with XRD, Raman, BET and SEM techniques. The electrochemical properties of the as-prepared composites are investigated systematically by charge/discharge testing, cyclic voltammograms and AC impedance spectroscopy, respectively. In comparison with the pristine Li4Ti5O12, the hole-rich Li4Ti5O12 induced by carbon nanotubes exhibits superior electrochemical performance, especially at high rates. The obtained excellent electrochemical performances of should be attributed to the hole-rich structure of the materials, which offers more connection-area with the electrolyte, shorter diffusion-path length as well faster migration rate for both Li ions and electrons during the charge/discharge process.  相似文献   

13.
In this paper, we report a facile method to prepare a twins-structural Sn@C core–shell composite that is used as anode materials for lithium-ion batteries. Its surface morphology and microstructures were characterized by the scanning electron microscope, X-ray diffraction, and transmission electron microscope. The electrochemical performances of Sn@C were measured by charge–discharge tests, cyclic voltammogram, and electrochemical impedance spectra. It is shown that such a composite exhibits a high initial specific capacity of 970 mA h g?1 and a capacity retention of 400 mA h g?1 after 50 cycles at the current density of 100 mA g?1.  相似文献   

14.
Herein, a simple in situ charge/discharge activation strategy is proposed to synthesize Fe(OH)3 film on Fe foam as an efficient anode of supercapacitors. The physical characteristics of electrodes are characterized and the electrochemical energy storage performances are investigated. Importantly, it is demonstrated the as‐synthesized Fe(OH)3@Fe foam electrode adopted a novel Fe3+/Fe0 redox reaction mechanism for energy storage in alkaline electrolytes. Compared with previously reported Fe3+/Fe2+ mechanisms, the Fe3+/Fe0 redox couple shows a more promising application value (e.g., higher theoretical‐specific capacitance, excellent conductivity of its reduction state). As for supercapacitor anodes, the electrode achieves high areal capacitance of 5.55–3.94 F cm−2 at a current range of 20–200 mA cm−2 and shows good stability for high‐rate and long‐term cycling. The assembled single supercapacitor device gives a high energy density of 11.64–7.43 Wh m−2 at a power density of 157–1461 W m−2. More importantly, the as‐adopted in situ activation strategy may also have potential value for synthesizing other transition metal oxide‐based products.  相似文献   

15.
Li2FeSiO4/C composites were synthesized via a tartaric-acid-assisted sol–gel method with ethanol and ethylene glycol (EG) as mixed solvents. Effects of solvent composition on the physical properties and electrochemical performances of Li2FeSiO4/C were studied. The materials were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical performances of Li2FeSiO4/C were evaluated by galvanostatic charge–discharge and electrochemical impedance spectra (EIS) measurements. The results show that the addition of EG to ethanol solvent during preparation has a positive effect on the electrochemical performance of Li2FeSiO4/C. The sample synthesized using EG–ethanol with the volume ratio of 2:7 has the best electrochemical performance. It delivers an initial discharge capacity of 105 mAh g?1 at C/16. AC impendence investigation shows that Li2FeSiO4/C synthesized using the optimal EG/ethanol volume ratio has lower resistance of electrode/electrolyte interface and higher lithium-ion diffusion coefficient than that synthesized using ethanol as solvent.  相似文献   

16.
In this work, supercapacitive performance of polyaniline/yttrium aluminum garnet (YAG: Y3Al5O12) nanoparticles (PANI/YAGNPs) was studied. YAG nanoparticles were synthesized by pulse electro-deposition method and after that, PANI/YAGNPs electrodeposited on the surface of glassy carbon electrodes through cyclic voltammetry. Morphological studies show that YAG nanoparticles were distributed in the structure of PANI filaments uniformly. XRD and FTIR were used to perform a structural study of materials. Different electrochemical techniques such as cyclic voltammetry (CV), galvano static charge discharge (CD), and impedance spectroscopy (EIS) were used to evaluate the applicability of using PANI/YAGNPs as an active material for supercapacitors. The specific capacitance (SC) of PANI and PANI YAG NPs electrodes calculated using CV technique are 240 and 440 F/g, respectively. Increasing the conductivity and stability of composite electrodes during continuous CD cycles compared to PANI ones are some features of using YAG NPs in the structure of polymer electrodes. Stability of composite electrodes remains about 98% through 1000 continuous cycles whereas the polymeric electrode loses about 91% of its capacitance during this time range.  相似文献   

17.
The performance of supercapacitors based on different materials with pseudocapacitive properties such as several conducting polymers (ECPs), amorphous manganese dioxide (a-MnO2), and activated carbon is reported. Composite electrodes of high resiliency and good electronic conductivity were obtained by mixing the active materials with carbon nanotubes. The various limitations of all the above-mentioned materials, when used as negative and positive electrodes in traditional symmetric systems, are shown. It is demonstrated that a successful application of ECPs and a-MnO2 in supercapacitor technologies is possible only in an asymmetric configuration, i.e. with electrodes of different nature for positive and negative polarizations. Several types of asymmetric capacitors were developed by combining ECPs, a-MnO2, and activated carbon and characterized in aqueous electrolyte by galvanostatic charge–discharge, cyclic voltammetry, and impedance spectroscopy. The best device considering the specific energy and power is the asymmetric supercapacitor using a-MnO2 and poly(3,4-ethylenedioxythiophene) (PEDOT) for the positive and negative electrodes, respectively. It has an operating voltage of 1.8 V, which is attributed to different operating potentials of both electrodes, and good electrochemical stability in neutral aqueous electrolyte. According to the voltage value, the energy density of the asymmetric capacitor at a current density of 250 mA/g is found to be 13.5 W h/kg, which is about ten times more than for a symmetric capacitor based on PEDOT in an aqueous medium. The asymmetric capacitor provides two times higher power than a symmetric capacitor based on activated carbon in organic electrolyte, and is thus extremely promising for the development of environmentally friendly systems. PACS 82.45.Wx; 82.45.Yz; 82.47.Uv; 82.35.Cd  相似文献   

18.
Among the several materials under development for use as a cathodes in lithium-ion batteries olivine-type LiFePO4 is one of the most promising cathode material. However, its poor conductivity and low lithium-ion diffusion limits its practical application. In this study, we report seven different carboxylic acids used to synthesize LiFePO4/C composite, and influences of carbon sources on electrochemical performance were intensively studied. The structure and electrochemical properties of the LiFePO4/C were characterized by X-ray diffraction, scanning electron microscopy, electrical conductivity, and galvanostatic charge–discharge measurements. Among the materials studied, the sample E with tartaric acid as carbon source exhibited the best cell performance with a maximum discharge capacity of 160 mAh g−1 at a 0.1 C-rate. The improved electrochemical properties were attributed to the reduced particle size and enhanced electrical contacts by carbon.  相似文献   

19.
Bulk nanomaterials based on sp2 carbon nanopolymorphs are promising candidates for supercapacitors due to their unique properties such as extremely high specific surface area, high conductivity and stability against graphitization. However, the mechanical response of such materials to external loading is not understood well. This Letter studies the effect of hydrostatic pressure on the mechanical properties and structures of these materials via molecular dynamics simulations. Three types of nanopolymorphs‐based nanomaterials that are composed of bended graphene flakes, short carbon nanotubes and fullerenes are considered. It is found that these three materials show a distinct relation between the pressure and volume strain. Moreover, their resistance to graphitization depends on the structure of their constituent components. The phenomena are explained by analysing the radial distribution function and coordination numbers of the atoms. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
In this research, networks of single-walled carbon nanotubes (SWNTs) were used to host activated carbon (aC) microparticles to fabricate freestanding composite electrodes without the use of polymer binders. The aC-SWNT composite electrodes with up to 50 wt. % aC showed specific surface areas approaching 1000 m2/g and electrical conductivities >36 S/cm. The composite electrodes possessed the properties of both pure SWNT electrodes (e.g. low ohmic drop and rapid ion diffusion) and activated carbon particles (e.g. high specific capacitance). With an interconnected mesoporous microstructure and high electrical conductivity, the CNT networks provide an attractive alternative to polymer binders for forming freestanding electrodes for electrical energy storage devices. Here we show that micron-sized particles can be supported in this framework to utilize the performance enhancement and robustness provided by CNTs. Symmetric electrochemical capacitors fabricated with the electrodes in 6 M potassium hydroxide (KOH) aqueous electrolyte maintained specific capacitances of more than 45 F/g after 30,000 constant-current charge–discharge cycles with a current of 3.6 mA/cm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号