首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thin films of In-doped Ge-S in the form of Ge35In8S57 with different film thickness were deposited using an evaporation method. The X-ray diffraction studies demonstrate that the as-prepared films are amorphous in nature for these films. Some optical constants were calculated at a thickness of 150, 300, 450 and 900?nm and annealing temperature of 373, 413, 437 and 513?K. Our optical observations show that the mechanism of the optical transition obeys the indirect transition. It was found that the energy gap, Eg, decreases from 2.44 to 2.20?eV with expanding the thickness of the film from 150 to 900?nm. On the other hand, it was found that Eg increases with annealing temperature from 373 to 513?K. The increment in the band gap can be attributed to the gradual annealing out of the unsaturated bonds delivering a decreasing the density of localized states in the band structure. Using the single oscillator model, the dispersion of the refractive index is described. The dispersion constants of these films were calculated with different both thickness and annealing temperatures. Additionally, both of nonlinear susceptibility, χ(3) and nonlinear refractive index, n2 were calculated.  相似文献   

2.
In this paper, Cu2ZnSnS4 (CZTS) thin films were elaborated at room temperature by thermal evaporation method using Glancing Angle Deposition (GLAD) technique at different incident angles γ = 00°, 20°, 40°, 60°, 75° and 85°. XRD, Raman scattering analysis, (SEM) and UV-Visible-NIR spectroscopy were used to characterize the crystalline structure, morphology and optical properties of CZTS samples. The results have showed that the ellipsometric analysis leaded to an optical anisotropy due to the structural anisotropy for CZTS samples deposited at γ = 85°. All Cu2ZnSnS4 samples exhibited a high absorption coefficient (α > 104 cm−1) and a direct optical transition varied between 1.48 eV and 2.05 eV for CZTS thin films deposited at γ = 00° and 85°, respectively. The value of the Urbach energy increased with incident angle, indeed, its value increased from 58 meV (γ = 00°) to 604 meV (γ = 75°) and decrease to be 368 meV for γ = 85°. This result is correlated with the Raman analysis. From transmittance data of CZTS thin films deposited at γ = 00°, 20° and 40° Swanepoel's method was used, to estimate the refractive index n. It allows us, using the Wemple-DiDomenico and Spitzer-Fan models, to calculate other optical parameters such as the oscillator energy E0, dispersion energy Ed, zero frequency refractive index n0, high frequency dielectric constant ε and the electric susceptibility χe. On the other hand, to have an idea about the evolution of the nonlinear optical character, the nonlinear susceptibility χ(3) and the nonlinear refractive index n2 of CZTS thin films deposited at γ = 00°, 20° and 40° were investigated. Ellipsometric measurements of CZTS thin films has leaded to an optical anisotropy for γ = 85°. In addition, the generalized ellipsometry in Jones formalism have proved this property, which can be related to the nano-columnar slanted structure as revealed by (SEM) analysis.  相似文献   

3.
The ternary Zn1?x Cd x O (x = 0, 0.2) thin films with wurtzite structure and highly (002)-preferred orientations were deposited on glass substrates by the direct current (dc) reactive magnetron sputtering method. The X-ray diffraction, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), optical absorption spectra and photoluminescence (PL) were employed to investigate the structural and the optical properties in detail. The results indicated that as x varied from x = 0–0.2, the diffraction angle of the (002) peaks decreased from ~34.36° to ~33.38° and the lattice spacing increased from 0.260 to 0.268 nm. Moreover, the optical band-gap of the Zn1?x Cd x O thin films with the wurtzite structure decreased from 3.20 eV at x = 0–2.70 eV at x = 0.2. Correspondingly, the near-band-edge PL was tuned in a wide visible region from ~393 to 467 nm. The chemical bonding states of Cd in Zn1?x Cd x O alloy thin films were examined by XPS analysis.  相似文献   

4.
Molybdenum-doped cadmium oxide films were prepared by a spray pyrolysis technique at a substrate temperature of 300?°C. The effect of doping on structural, electrical and optical properties were studied. X-ray analysis shows that the undoped CdO films are preferentially oriented along the (111) crystallographic direction. Molybdenum doping concentration increases the films?? packing density and reorients the crystallites along the (200) plane. A?minimum resistivity of 4.68×10?4????cm with a maximum mobility of 75?cm2?V?1?s?1 is achieved when the CdO film is doped with 0.5?wt.% Mo. The band-gap value is found to increase with doping and reaches a maximum of 2.56?eV for 0.75?wt.% as compared to undoped films of 2.2?eV.  相似文献   

5.
Carbon nitride thin films deposited by dc unbalanced magnetron sputtering have been analyzed by high-resolution X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The XPS data show that N 1s binding states depend on substrate temperature (Ts). By comparison with the Raman spectra, N 1s binding states are assigned in which nitrogen atoms are mainly bound to sp2 and sp3 carbon atoms at Ts = 100°C, whereas at Ts = 500°C nitrogen atoms are mainly bonded to sp2, sp3 and sp1 carbon atoms.  相似文献   

6.
A series of diamond-like carbon (DLC) films with different microstructure were prepared by depositing carbon atoms on diamond surface with incident energy ranging from 1 to 100 eV. The thermal conductivity of the deposited films and the Kapitza resistance between the film and the diamond substrate were investigated. Results show that the average density, the average fraction of sp3 bonding and the thermal conductivity of the DLC films increase first, reaching a maximum around 20–40 eV before decreasing, while the Kapitza resistance decreases gradually with increased deposition energy. The analysis suggests that the thermal resistance of the interface layer is in the order of 10?10 m2K/W, which is not ignorable when measuring the thermal conductivity of the deposited film especially when the thickness of the DLC film is not large enough. The fraction of sp3 bonding in the DLC film decreases gradually normal to the diamond surface. However, the thermal conductivity of the film in normal direction is not affected obviously by this kind of structural variation but depends linearly on the average fraction of sp3 bonding in the entire film. The dependence of the thermal conductivity on the fraction of sp3 bonding was analysed by the phonon theory.  相似文献   

7.
A nanocrystalline and porous p-polyaniline/n-WO3 dissimilar heterojunction at ambient temperature is reported. The high-quality and well-reproducible conjugated polymer composite films have been fabricated by oxidative polymerization of anilinium ion on predeposited WO3 thin film by chemical bath deposition followed by thermal annealing at 573 K for 1 h. Atomic force microscopy (AFM) analyses reveal a homogenous but irregular cluster of faceted spherically shaped grains with pores. The scanning electron microscopy confirms the porous network of grains, which is in good agreement with the AFM result. The optical absorption analysis of polyaniline/WO3 hybrid films showed that direct optical transition exist in the photon energy range 3.50–4.00 eV with bandgap of 3.70 eV. The refractive index developed peak at 445 nm in the dispersion region while the high-frequency dielectric constant, ? , and the carrier concentration to effective mass ratio, N/m*, was found to be 1.58 and 1.10 × 1039 cm?3, respectively. The temperature dependence of electrical resistivity of the deposited films follows the semiconductor behavior while the C–V characteristics (Mott–Schottky plots) show that the flat band potential was ?791 and 830 meV/SCE for WO3 and polyaniline.  相似文献   

8.
Experimental data are presented from studies of the structure and bond type of carbon atoms in amorphous carbon-nickel films deposited from pulsed vacuum-arc discharge plasma sources. X-ray photoelectron spectroscopy was used. The characteristics of the plasmon loss spectra depend significantly on the deposition parameters. Carbon exists in a mixed sp2+sp3 hybridized state in the carbon–nickel films. The ratio of sp3/sp2 carbon bonds increases when the nickel content is reduced (from 5.5 to 1.0 atomic %) and the deposition angle is increased. The structure closest to that of diamond was with a substrate bias voltage of –80 to –100 V and a deposition angle of 90°.  相似文献   

9.
A novel high-performance thermistor material based on Co-doped ZnO thin films is presented. The films were deposited by the pulsed laser deposition technique on Si (111) single-crystal substrates. The structural and electronic transport properties were correlated as a function of parameters such as substrate temperature and Co-doped content for Zn1?x Co x O (x=0.005,0.05,0.10 and 0.15) to prepare these films. The Zn1?x Co x O films were deposited at various substrate temperatures between 20 and 280 °C. A value of 20 %/K for the negative temperature coefficient of resistance (TCR) with a wide range near room temperature was obtained. It was found that both TCR vs. temperature behavior and TCR value were strongly affected by cobalt doping level and substrate temperature. In addition, a maximal TCR value of over 20 %?K?1 having a resistivity value of 3.6 Ω?cm was observed in a Zn0.9Co0.1O film near 260 °C, which was deposited at 120 °C and shown to be amorphous by X-ray diffraction. The result proved that the optimal Co concentration could help us to achieve giant TCR in Co-doped ZnO films. Meanwhile, the resistivities of the films ranged from 0.4 to 270 Ω?cm. A Co-doped ZnO/Si film is a strong candidate of thermometric materials for non-cooling and high-performance bolometric applications.  相似文献   

10.
The thin films of CdS1-xSex were successfully deposited over glass substrates by chemical bath deposition technique. Cadmium acetate, thiourea and sodium selenosulfate were used as source materials for Cd2+, S2? and Se2? ions, while 2-mercaptoethanol was used as capping agent. The various deposition conditions such as precursor concentration, deposition temperature, pH and deposition time were optimized for the deposition of CdS1-xSex thin films of good quality and the films were annealed at 200° and 300 °C. The structural, morphological, chemical and optical properties were examined by various characterization techniques and discussed in detail. The optical band gap of CdS1-xSex thin film samples were estimated and found in the range from 2.11 to 1.79 eV for as-deposited and annealed thin films.  相似文献   

11.
Cr doped CdO thin films were deposited on glass substrates by reactive DC magnetron sputtering with varying film thickness from 250 to 400 nm. XRD studies reveal that the films exhibit cubic structure with preferred orientation along the (2 0 0) plane. The optical transmittance of the films decreases from 92 to 72%, whereas the optical energy band gap of the films decreased from 2.88 to 2.78 eV with increasing film thickness. The Wemple–DiDomenico single oscillator model has been used to evaluate the optical dispersion parameters such as dispersion energy (Ed), oscillator energy (Eo), static refractive index (no) and high frequency dielectric constant (ε). The nonlinear optical parameters such as optical susceptibility (χ(1)), third order nonlinear optical susceptibility (χ(3)) and nonlinear refractive index (n2) of the films were also determined.  相似文献   

12.
The structural, morphological and optical properties of CuAlS2 films deposited by spray pyrolysis method have been investigated. CuAlS2 in the form of films is prepared at different deposition conditions by a simple and economical spray pyrolysis method. The structural, surface morphology and optical properties of the films were analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM) and absorbance spectra, respectively. The films were polycrystalline, crystallized in a tetragonal structure, and are preferentially orientated along the (1 1 2) direction. Grain size values, dislocation density, and d% error of CuAlS2 films were calculated. The optical band gap of the CuAlS2 film was found to be 3.45 eV. The optical constants such as refractive index, extinction coefficient and dielectric constants of the CuAlS2 film were determined. The refractive index dispersion curve of the film obeys the single oscillator model. Optical dispersion parameters Eo and Ed developed by Wemple-DiDomenico were calculated and found to be 3.562 and 12.590 eV.  相似文献   

13.
In the present work the correlation of electrical, optical and nano-mechanical properties of argon-diluted diamond-like carbon (Ar-DLC) thin films with sp3 and sp2 fractions of carbon have been explored. These Ar-DLC thin films have been deposited, under varying C2H2 gas pressures from 25 to 75 mTorr, by radio frequency-plasma enhanced chemical vapor deposition technique. X-ray photoelectron spectroscopy studies are performed to estimate the sp3 and sp2 fractions of carbon by deconvoluting C 1s core level spectra. Various electrical, optical and nano-mechanical parameters such as conductivity, I-V characteristics, optical band gap, stress, hardness, elastic modulus, plastic resistance parameter, elastic recovery and plastic deformation energy have been estimated and then correlated with calculated sp3 and sp2 fractions of carbon and sp3/sp2 ratios. Observed tremendous electrical, optical and nano-mechanical properties in Ar-DLC films deposited under high base pressure conditions made it a cost effective material for not only hard and protective coating applications but also for electronic and optoelectronic applications.  相似文献   

14.
Cu2ZnSn(SxS1?x)4 (CZTSSe) thin films were prepared by annealing a stacked precursor prepared on Mo coated glass substrates by the sputtering technique. The stacked precursor thin films were prepared from Cu, SnS2, and ZnS targets at room temperature with stacking orders of Cu/SnS2/ZnS. The stacked precursor thin films were annealed using a tubular two zone furnace system under a mixed N2 (95%) + H2S (5%) + Se vaporization atmosphere at 580 °C for 2 h. The effects of different Se vaporization temperature from 250 °C to 500 °C on the structural, morphological, chemical, and optical properties of the CZTSSe thin films were investigated. X-ray diffraction patterns, Raman spectroscopy, and X-ray photoelectron spectroscopy results showed that the annealed thin films had a single kesterite crystal structure without a secondary phase. The 2θ angle position for the peaks from the (112) plane in the annealed thin films decreased with increasing Se vaporization temperature. Energy dispersive X-ray results showed that the presence of Se in annealed thin films increased from 0 at% to 42.7 at% with increasing Se vaporization temperatures. UV–VIS spectroscopy results showed that the absorption coefficient of all the annealed thin films was over 104 cm?1 and that the optical band gap energy decreased from 1.5 eV to 1.05 eV with increasing Se vaporization temperature.  相似文献   

15.
Abstract: The large band gap (3.58?eV) and dielectric properties (?? r =50) of bulk SrHf0.67Ti0.33O3 (SHTO) make it a promising high-k material. SHTO films were deposited on p-type (100) Si single crystal substrates by pulsed laser deposition. The composition, structure, thickness, and roughness of the SHTO films have been studied using X-ray Photoelectron Spectroscopy, X-ray reflectivity, transmission electron microscopy, and atomic force microscopy. The capacitance?Cvoltage and leakage current density characteristics of the films have been evaluated. For a post-annealed SHTO film with a thickness of 25 nm, the relatively high permittivity of 35 was achieved with the low leakage current density of 4.96×10?4?A/cm2 at ?2?V bias voltage.  相似文献   

16.
Transparent and conducting indium tin oxide (ITO) thin films were deposited on soda lime glass substrates by RF plasma magnetron sputtering at room temperature. The effect of thickness (100, 200 and 300?nm) on the physical (structural, optical, electrical) properties of ITO thin films was investigated systematically. It is observed that with an increase in thickness, the X-ray diffraction data indicate polycrystalline films with grain orientations predominantly along (222) and (400) directions; the average grain size increases from 10 to 30?nm; the optical band gap increases from 3.68 to 3.73?eV and the transmission decrease from 80% to 70% . Four-point probes show a low resistivity (2.4×10?5?Ω?cm) values for film with a thickness 300?nm. Present work shows that the ITO is a promising transparent conductive oxide material for the solar cell application.  相似文献   

17.
R. Mariappan  V. Ponnuswamy  M. Ragavendar 《Optik》2012,123(13):1196-1200
The cadmium sulfo selenide CdS1?xSex thin films were chemical bath deposited in aqueous media onto coated glass substrates. As-deposited CdS1?xSex thin films were annealed at 350 °C in air for 30 min. The structural, morphological, compositional and optical properties of deposited CdS1?xSex thin films were studied using X-ray diffractometer (XRD), scanning electron microscopy (SEM), Energy dispersive analysis by X-ray (EDAX), and UV-Vis-NIR spectrophotometer respectively. X-ray diffraction patterns of CdS1?xSex thin films reveal the polycrystalline nature and hexagonal structure. The microstructural parameters such as crystallite size (D), micro strain (?), and dislocation density were calculated and found to depend on compositions. The surface morphology and grain size are found to be influenced with the annealing temperature. The presence of Cd, S and Se of the CdS1?xSex thin films and the composition of CdS1?xSex thin film are estimated by EDAX analysis. The optical transmittance and absorption spectra were recorded in the range 400–2500 nm. The band gap of the CdS1?xSex thin films is found to decrease from 2.5 eV to 1.75 eV.  相似文献   

18.
The effect of hydrogen absorption on electrical resistance with temperature for TiNi and TiNi-Cr thin films was investigated. The TiNi thin films of thickness 800 Å were deposited at different angles (? = 0°, 30°, 45°, 60° and 75°) under 10?5 Torr pressure by thermal evaporation on the glass substrate at room temperature. A layer of Cr of thickness 100 Å was coated on the TiNi thin films. The changing rate of hydrogen absorption increases after Cr layer coating because Cr enhances the catalytic properties of hydrogen absorption in thin films. The rate of hydrogen absorption increases with temperature at lower range but at higher range of temperature it was found to decrease and also it was found that the hydrogen absorption increases with angle of deposition.  相似文献   

19.
The fundamental absorption edge of evaporated WO3 films is investigated. The optical gap of the virgin film is estimated to be 3.41 eV at room temperature and it decreases with increase of annealing temperature up to 200°C. Annealing at 300°C leads to change in the spectral shape, which is caused by crystallization. For the films annealed at 200°C, temperature coefficient of the optical gap is estimated to be ?2×10?4 eV/K and the slope of Urbach's tail is found to be independent of measuring temperature up to 200°C. With electrolytic coloration, shift of the optical gap toward higher energy is observed. Magnitude of this shift is estimated to be 0.05 eV at the color center concentration of 7.5×1021 cm?3 when H+ electrolyte is used. If Li+ electrolyte is used, the magnitude of this shift is about three times larger than in the case of H+ electrolyte. This fact is interpreted by a small change in the host matrix structure owing to the injection of proton or Li+ during coloration.  相似文献   

20.
TiO2 thin films were prepared by sol-gel method. The structural investigations performed by means of X-ray diffraction (XRD) technique and scanning electron microscopy (SEM) showed the shape structure at T = 600 °C. The optical constants of the deposited film were obtained from the analysis of the experimentally recorded transmittance spectral data in the wavelength of 200–3000 nm range. The values of some important parameters of the studied films are determined, such as refractive index n and thickness d. In this work, using the transmission spectra, we have calculated the dielectric constant (ε) for four layered TiO2 films; a simple relation is suggested to estimate the third-order optical nonlinear susceptibility χ(3). It has been found that the dispersion data obeyed the single oscillator of the Wemple–DiDomenico model, from which the dispersion parameters and high-frequency dielectric constant were determined. The estimations of the corresponding band gap Eg, χ(3) and ε are 2.57 eV, 0.021 · 10−10 esu and 5.20, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号