首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the microstructure of amorphous Fe2O3 nanoparticles by using molecular dynamics (MD) simulations. Non-periodic boundary conditions with Born-Mayer type pair potentials were used to simulate a spherical model of different diameters of 2, 3, 4 and 5 nm. Structural properties of an amorphous model obtained at 350 K have been analyzed in detail through the partial radial distribution functions (PRPFs), coordination number distributions, bond-angle distributions and interatomic distances. Calculations showed that structural characteristics of the model are in qualitative agreement with the experimental data. The observation of a large amount of structural defects as the particle size is decreased suggested that surface structure strongly depends on the size of nanoparticles. In addition, surface structure of amorphous Fe2O3 nanoparticles have been studied and compared with that observed in the core and in the bulk counterpart. Radial density profiles and stoichiometry in morphous Fe2O3 nanoparticles were also found and discussed.  相似文献   

2.
Nonlinear optical properties of Fe2O3 nanoparticles were investigated by the signal-beam Z-scan technique with Ar+ and Ne–He lasers. The largest reported effective nonlinear coefficient, n2=−8.07×10−7 cm2/W, was obtained. It is demonstrated that the nonlinear optical response originals from quantum confinement effect.  相似文献   

3.
Fe based oxides are considered as a promising catalyst for the oxygen evolution reaction (OER) due to their low cost and high stability. Here, based on density functional theory calculations, the electrocatalytic behaviors of pure and metal (Ni, Co) doped Fe-terminated Fe2O3(0001) are investigated. The potential-limiting step for OER is determined as the formation of O* by dehydrogenating surface hydroxyl and it is suggested that the doping enhances the catalytic activity of Fe2O3(0001) by reducing the free energy change of rate limiting step on doped Ni or Co atom. Especially, the calculated over-potential of Co-doped Fe2O3 (0001) surface is about 0.63 eV on Co site, which is comparable with the theoretical over-potential of 0.56 eV for RuO2.  相似文献   

4.
丁皓  申承民  惠超  徐梽川  李晨  田园  时雪钊  高鸿钧 《中国物理 B》2010,19(6):66102-066102
Monodisperse Au-Fe 3 O 4 heterodimeric nanoparticles (NPs) were prepared by injecting precursors into a hot reaction solution.The size of Au and Fe 3 O 4 particles can be controlled by changing the injection temperature.UV-Vis spectra show that the surface plasma resonance band of Au-Fe 3 O 4 heterodimeric NPs was evidently red-shifted compared with the resonance band of Au NPs of similar size.The as-prepared heterodimeric Au-Fe 3 O 4 NPs exhibited superparamagnetic properties at room temperature.The Ag-Fe 3 O 4 heterodimeric NPs were also prepared by this synthetic method simply using AgNO 3 as precursor instead of HAuCl 4.It is indicated that the reported method can be readily extended to the synthesis of other noble metal conjugated heterodimeric NPs.  相似文献   

5.
The preparation of superparamagnetic magnetite (Fe3O4) nanoparticles by electro-precipitation in ethanol is proposed. Particle average size can be set from 4.4 to 9 nm with a standard deviation around 20%. Combination of wide-angle X-ray scattering (WAXS), Electron energy loss spectroscopy (EELS) and Mössbauer spectroscopy characterizations clearly identifies the particles as magnetite single-crystals (Fe3O4).  相似文献   

6.
A new synthesis method of α-Fe2O3 nanoparticles was developed, in which the ferrous and ferric salts as well as polyaniline acted as the precursor and dispersant, respectively. From the investigation of X-ray diffraction and FT-IR spectra, the α-Fe2O3 nanoparticles can be directly prepared by the co-precipitation method without high-temperature calcining. Transmission electron microscope (TEM) and scanning electron microscope (SEM) observation revealed that the α-Fe2O3 nanoparticles had average diameters ranging from 30.0 to 75.0 nm. Compared with previous methods, this present method shows an easy processing and can be applied on the large-scale produce of α-Fe2O3 nanoparticles in one step.  相似文献   

7.
Amino and/or polyethyleneglycol (PEG) functionalized core-shell γFe2O3-SiO2 magnetic nanoparticles were synthesized and characterized. Amino-PEG-functionalized core-shell nanoparticles have calibrated sizes and a good colloidal stability. These bi-functionalized core-shell nanoparticles are potentially useful as biocompatible particles for magnetically targeted chemotherapy.  相似文献   

8.
A detailed study of the in-plane magnetotransport properties of spin valves with one and two Fe3O4 electrodes is presented. Fe3O4/Au/Fe3O4 spin valves exhibit a clear anisotropic magnetoresistance in small magnetic fields but no giant magnetoresistance (GMR). The absence of GMR in these structures is due to simultaneous magnetization reversal in the two Fe3O4 layers. By contrast, a negative GMR effect is measured on Fe3O4/Au/Fe spin valves. The negative GMR is attributed to an electron spin scattering asymmetry at the Fe3O4/Au interface or an induced spin scattering asymmetry in the Au interfacial layers.  相似文献   

9.
Results of charge-transport and magnetic measurements of nanotubular polyaniline (PANI) composites containing Fe_3O_4 nanoparticles (~10nm) synthesized by a "template-free" method are reported. The T^{-1/2} resistivity has been observed, and dc magnetic susceptibility data are fitted to an equation χ=χ^*_P+C/T. With increasing weight ratio of Fe_3O_4, the electrical conductivity and temperature- independent susceptibility χ^*_P increase, and the Curie-type susceptibility is suppressed at low temperatures. Further discussions have been given. The PANI-H_3PO_4/Fe_3O_4 composite containing 27wt% of Fe_3O_4 nanoparticles is superparamagnetic, exhibiting very little hysteresis even at 5K.  相似文献   

10.
Powder iron has been bombarded by a 5 keV Kr+ ions in a vacuum better than 10-7 torr and under few 10-6 torr ultra pure oxygen partial pressure. The optical spectra of the sputtered particles were recorded between 340.0 nm and 410.0 nm. These spectra exhibit discrete lines, which are attributed to neutral excited atoms of iron. Two iron oxides, namely hematite (Fe2O3)_{3}) and magnetite (Fe3O4)_{4}), in powder form, were studied under the same experimental conditions and identical lines were observed in the obtained spectra. The absolute intensities of the spectral lines in all spectra were measured and the differences in the recorded yield photons were discussed in term of electron-transfer processes between the excited sputtered atom and the bombarded surface. In accordance with the proposed interpretation, we suggest values for the energy gaps and electronic affinities for the studied oxides and for the oxide layer that might be formed by the adsorption of oxygen atoms.  相似文献   

11.
李发伸  王涛  王颖 《物理学报》2005,54(7):3100-3105
在近中性条件下,利用H22氧化Fe(OH)2胶体成功制备了Fe3 4纳米颗粒.分别利用透射电镜(TEM),x射线衍射仪(XRD),振动样品磁强计(VSM)和超导量子干涉仪(SQUI D)对样品的形貌,结构,宏观磁性进行了表征和测量.TEM图像表明样品为球形颗粒,直径 大小约18nm,且分布较均匀.XRD结果表明样品为立方尖晶石结构.穆斯堡尔谱测量表明样品 室温下对应两套六线谱,样品的晶体结构存在缺陷,内磁场略小于块体Fe34的值. 宏观磁测量表明样品的饱和磁化强度可达67×10-3A·m2/g,在20 K出现了Verw ey转变.选择该法制备的Fe34纳米颗粒与共沉淀法得到的样品作 了磁性比较.宏观磁 测量表明共沉淀法制备的样品在外磁场为1T时仍未饱和,磁化强度仅为46×10-3A·m2/g,在178K出现了超顺磁转变温度,且在测量温度范围内没有发现Verwe y转变. 关键词: 亚铁磁 超顺磁 穆斯堡尔谱  相似文献   

12.
In this paper, we have first demonstrated a facile and green synthetic approach for preparing superparamagnetic Fe3O4 nanoparticles using α-d-glucose as the reducing agent and gluconic acid (the oxidative product of glucose) as stabilizer and dispersant. The X-ray powder diffraction (XRD), X-ray photoelectron spectrometry (XPS), and selected area electron diffraction (SAED) results showed that the inverse spinel structure pure phase polycrystalline Fe3O4 was obtained. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results exhibited that Fe3O4 nanoparticles were roughly spherical shape and its average size was about 12.5 nm. The high-resolution TEM (HRTEM) result proved that the nanoparticles were structurally uniform with a lattice fringe spacing about 0.25 nm, which corresponded well with the values of 0.253 nm of the (3 1 1) lattice plane of the inverse spinel Fe3O4 obtained from the JCPDS database. The superconducting quantum interference device (SQUID) results revealed that the blocking temperature (Tb) was 190 K, and that the magnetic hysteresis loop at 300 K showed a saturation magnetization of 60.5 emu/g, and the absence of coercivity and remanence indicated that the as-synthesized Fe3O4 nanoparticles had superparamagnetic properties. Fourier transform infrared spectroscopy (FT-IR) spectrum displayed that the characteristic band of Fe-O at 569 cm−1 was indicative of Fe3O4. This method might provide a new, mild, green, and economical concept for the synthesis of other nanomaterials.  相似文献   

13.
In this paper, we report on a comparative study of the effect of Fe2O3 nanoparticles (NP), introduced onto a thin oxide layer formed on silicon and germanium surfaces, on the thermal decomposition pathway of the individual oxide layers. On both the surfaces, NP of Fe2O3 undergo a reduction reaction through a bonding partner change reaction, where the oxygen atoms change from Fe to Si or Ge. On both the surfaces, annealing results in the conversion of the suboxide-like species to dioxide-like species (SiOx to SiO2 and GeOx to GeO2 respectively for Si and Ge surfaces), until the oxide layer decomposes following the desorption of the respective monoxide species (SiO and GeO). Both the Si and Ge corelevels show a larger chemical shift (4.1 and 3.51 eV in Si 2p and Ge 3d corelevels, respectively) for the as-prepared oxide samples with the NP, at room temperature compared to that without the NP (3.7 and 3.4 eV), indicating a catalytic enhancement of the dioxide formation. Selective formation of silicon oxides leads to encapsulation of the nanoparticles and acts like a protective layer, preventing the oxidation of Fe.  相似文献   

14.
C. Li 《Applied Surface Science》2010,256(22):6801-6804
Fe2O3/Al2O3 catalysts were prepared by solid state reaction method using α-Fe2O3 and γ-Al2O3 nano powders. The microstructure and surface properties of the catalyst were studied using positron lifetime and coincidence Doppler broadening annihilation radiation measurements. The positron lifetime spectrum shows four components. The two long lifetimes τ3 and τ4 are attributed to positronium annihilation in two types of pores distributed inside Al2O3 grain and between the grains, respectively. With increasing Fe2O3 content from 3 wt% to 40 wt%, the lifetime τ3 keeps nearly unchanged, while the longest lifetime τ4 shows decrease from 96 ns to 64 ns. Its intensity decreases drastically from 24% to less than 8%. The Doppler broadening S parameter shows also a continuous decrease. Further analysis of the Doppler broadening spectra reveals a decrease in the p-Ps intensity with increasing Fe2O3 content, which rules out the possibility of spin-conversion of positronium. Therefore the decrease of τ4 is most probably due to the chemical quenching reaction of positronium with Fe ions on the surface of the large pores.  相似文献   

15.
Binary (ZnO)0.5(P2O5)0.5 glasses doped with Eu2O3 and nanoparticles of Gd2O3:Eu were prepared by conventional melt-quench method and their luminescence properties were compared. Undoped (ZnO)0.5(P2O5)0.5 glass is characterized by a luminescent defect centre (similar to L-centre present in Na2O-SiO2 glasses) with emission around 324 nm and having an excited state lifetime of 18 ns. Such defect centres can transfer the energy to Eu3+ ions leading to improved Eu3+ luminescence from such glasses. Based on the decay curves corresponding to the 5D0 level of Eu3+ ions in both Gd2O3:Eu nanoparticles incorporated as well as Eu2O3 incorporated glasses, a significant clustering of Eu3+ ions taking place with the latter sample is confirmed. From the lifetime studies of the excited state of L-centre emission from (ZnO)0.5(P2O5)0.5 glass doped with Gd2O3:Eu nanoparticles, it is established that there exists weak energy transfer from L-centres to Eu3+ ions. Poor energy transfer from the defect centres to Eu3+ ions in Gd2O3:Eu nanoparticles doped (ZnO)0.5(P2O5)0.5 glass has been attributed to effective shielding of Eu3+ ions from the luminescence centre by Gd-O-P type of linkages, leading to an increased distance between luminescent centre and Eu3+ ions.  相似文献   

16.
A simple and reproducible method was developed to synthesize a novel class of Fe3O4/SiO2/dye/SiO2 composite nanoparticles. As promising candidates for use in bioassays, the obtained nanoparticles have an average diameter of 30 nm, and the thickness of the outer shell of silica could be tuned by changing the concentration of the silicon precursor tetraethyl orthosilicate during the synthesis. These multifunctional nanoparticles were found to be highly luminescent, photostable and superparamagnetic. The luminescence intensity of the nanoparticles was increased as the dye concentration was increased in the preparation process. The color of the luminescence was successfully tuned by incorporating different dyes into the nanoparticles. The measurements of the emission spectra indicated that relative to the dye molecules dissolved in ethanol, the emission of the dye-doped nanoparticles exhibited either a red shift or a blue shift, to which a tentative explanation was given.  相似文献   

17.
The magnetic structure of the (1-x) α Fe2O3xAl2O3 system with x= 0–0.1 has been investigated on polycrystalline samples by neutron diffraction method. The Morin transition temperature and the Néel temperature are observed to decrease on increasing x. The angle by which the magnetic moments turn out of the basal plane in the Morin transition also decreases with increasing x. The Morin transition does not occur above x = 0.09.  相似文献   

18.
We address a current controversy concerning the nature of the surfaces of Fe3O4(001) and γ-Fe2O3(001) grown on MgO(001) by molecular beam epitaxy. Despite recent claims to the contrary, we show that γ-Fe2O3(001) unambiguously exhibits a (1×1) surface net, in contrast to Fe3O4(001), which assumes a R45 reconstruction. In addition, we present high-energy-resolution Fe 2p and O 1s core-level photoelectron spectra obtained at both normal and grazing emission for γ-Fe2O3(001) and Fe3O4(001). These spectra show that the Fe3O4(001) surface has a higher Fe(III)/Fe(II) ratio than the bulk, and that the asymmetry in the O 1s line shape for Fe3O4(001) is due to final state effects rather than the presence of a surface oxygen or hydroxyl species.  相似文献   

19.
Bismuth-borate glasses doped with some rare earth ions were studied with respect to the density, molar volume and the elastic moduli, Poisson’s ratio, Debye temperature, microhardness, softening temperature, acoustic impedance, diffusion constant and latent heat of melting. Ultrasonic velocities were measured by the pulse echo overlap technique at a frequency of 10 MHz and at room temperature. From these velocities and density values, various elastic moduli were calculated. The correlation of elastic stiffness, the cross link density, and the fractal bond connectivity of these glasses are discussed. The derived experimental values of shear modulus, bulk modulus, Young’s modulus, and Poisson’s ratio for our glasses are compared with the theoretically calculated values in terms of the bond compression model and Makishima-Mackenize theory.  相似文献   

20.
Using first principles calculations based on a gradient corrected density functional formalism we show that Fe2O3 nano-particles with (1 0 0) and (0 0 0 1) surface orientations can oxidize CO to form CO2 with or without the presence of O2. However, depending on the surface orientation, the oxidation occurs through differing sequences. On the (1 0 0) surface, in the absence of O2, two CO molecules are required for one CO oxidation in a concerted reaction while on a oxygen terminated (0 0 0 1) surface, a single CO molecule itself, without the aid of a second CO, can react with the lattice oxygen atoms to form CO2. In the presence of O2, the O vacancies created by an initial oxidation through lattice oxygen act as the favored sites for O2 adsorption which can subsequently oxidize the incoming CO. Detailed reaction paths and the corresponding energetics for the proposed mechanisms are also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号