首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alumina micro- and nanopowders with the particle size from 200 μm to 40 nm synthesized by the sol-gel method are studied. The particle size dependence of γ-Al2O3→α-Al2O3 phase transformation is studied by differential thermal analysis, X-ray diffraction method, and transmission electron microscopy. X-ray diffraction data show that for alumina nanoparticles γ-Al2O3→θ-Al2O3 phase transformation occurs at 900°C, and for micro-particles it occurs in the temperature range 1150–1200°C. The alumina ceramics produced of alumina nanoparticles is shown to have higher flexural strength under three-point bending than the ceramics produced of micro-particles. The obtained results demonstrate that alumina particle size reduction stabilizes the formation of α-Al2O3 at lower temperatures, due to which the grain growth rate decreases and the flexural strength of monolithic oxide ceramics increases.  相似文献   

2.
Arsenic is easily evaporated during coal combustion, which not only raises serious environmental concerns but also results in the deactivation of catalyst in selective catalytic reduction (SCR) systems. It is a promising method to use sorbents for the capture of arsenic vapors (As2O3(g)) before As-containing flue gas entering SCR catalyst. However, arsenic has a strong affinity with sulfur in coal and SO2 in the coal combustion flue gas strongly suppresses As2O3(g) capture by typical Ca/Fe-based sorbents. This study estimated the selective capture of As2O3(g) by γ-Al2O3 and the effects of SO2 and NO on the arsenic adsorption were investigated. The results showed that As2O3(g) adsorption over γ-Al2O3 was effectively conducted at temperatures ranging from 300 to 400 °C. In the reacted γ-Al2O3, arsenic was predominantly in the form of As3+ through reactions with Al-O bonds and positive charged alumina ions. SO2 was slightly adsorbed on γ-Al2O3, which had a limited effect on arsenic adsorption. The adsorption of SO2 on γ-Al2O3 mainly occurred on the sites of hydroxyl groups (Al-OH) and few adsorbed SO2 was bound with positive charged alumina ions. NO was catalytically oxidized by γ-Al2O3 and released as NO2. Nevertheless, NO competed with As2O3(g) to adhere to positive charged alumina ions and strongly suppressed arsenic adsorption over γ-Al2O3. Fortunately, in the presence of SO2, NO was mostly transformed into intermediate (-SO3NO) at the sites of Al-OH on γ-Al2O3. As a result, the adverse effect of NO on the adsorption of As2O3(g) was weakened.  相似文献   

3.
The release of arsenic vapors (As3+) during high-arsenic coal combustion not only raises serious environmental concerns, but also causes catalyst deactivation in selective catalytic reduction (SCR) systems. To illuminate the mechanisms involved in the transformation of arsenic vapors towards less troublesome arsenates (As5+) during coal combustion, the accessory minerals in the high-arsenic coal were identified and the association relationship of these compounds with arsenic in fly ash was estimated. The results showed that Si/Al were the main inorganic elements in high-arsenic coal while the content of Ca was quite low. Ca was mostly transformed into sulfates during coal combustion and the effect of Ca on the arsenic transformation was limited. Al/Fe played a more significant role in arsenic speciation transformation and arsenic in the fly ash was predominantly bound with Al/Fe-oxides as arsenates. It was further confirmed that Al in kaolin/metakaolin showed good capacity on arsenic capture. In addition, few arsenic vapors were captured through the physical adsorption mechanism and the large fraction of As3+ in some fine particles was mostly attributed to the chemical reactions between arsenic vapors and Al-compounds. Meanwhile, a certain amount of arsenic vapors were converted into As2O5(s) under the influence of SCR catalyst and then carried by flue gas to participate in fly ash. Besides, part of arsenic distributed in the fly ash was through the stabilization of ash matrix in high temperature conditions. The transformation of arsenic from vapors towards particulate arsenic favored arsenic emission control by particulate matter control devices.  相似文献   

4.
Samples of a woven mesh of metal wire (fechral) with supported aluminum hydroxide compounds are studied. Aluminum hydroxide is formed in its bayerite modification. Aluminum oxides are produced during calcination: η-Al2O3 at 600°C, and θ-Al2O3 at 900°C. Subsequent modification with silicon, cerium, lanthanum, tungsten, and calcination at the same temperature results in the formation of their oxides. Interaction between alumina and tungsten at 600°C, and alumina and lanthanum at 900°C, are observed.  相似文献   

5.
A novel superhydrophobic alumina surface is fabricated by grafting stearic acid layer onto the porous and roughened aluminum film. The chemical and phase structure, morphology, and the chemical state of the atoms at the superhydrophobic surface were investigated by techniques as FTIR, XRD, FE-SEM, and XPS, respectively. Results show that a super water-repellent surface with a contact angle of 154.2° is generated. The superhydrophobic alumina surface takes on an uneven flowerlike structure with many nanometer-scale hollows distribute in the nipple-shaped protrusions, and which is composed of boehmite crystal and γ-Al2O3. Furthermore, the roughened and porous alumina surface is coated with a layer of hydrophobic alkyl chains which come from stearic acid molecules. Therefore, both the roughened structure and the hydrophobic layer endue the alumina surface with the superhydrophobic behavior.  相似文献   

6.
Oxy-fuel combustion is one of the most promising technologies to isolate efficiently and economically CO2 emissions in coal combustion for the ready carbon sequestration. The high proportions of both H2O and CO2 in the furnace have complex impacts on flame characteristics (ignition, burnout, and heat transfer), pollutant emissions (NOx, SOx, and particulate matter), and operational concerns (ash deposition, fouling/slagging). In contrast to the existing literature, this review focuses on fundamental studies on both diagnostics and modelling aspects of bench- or lab-scale oxy-fuel combustion and, particularly, gives attention to the correlations among combustion characteristics, pollutant formation, and operational ash concerns. First, the influences of temperature and species concentrations (e.g., O2, H2O) on coal ignition, volatile combustion and char burning processes, for air- and oxy-firing, are comparatively evaluated and modelled, on the basis of data from optically-accessible set-ups including flat-flame burner, drop-tube furnace, and down-fired furnace. Then, the correlations of combustion-generated particulate/NOx emissions with changes of combustion characteristics in both air and oxy-fuel firing modes are summarized. Additionally, ash deposition propensity, as well as its relation to the formation of fine particulates (i.e. PM0.2, PM1 and PM10), for both modes are overviewed. Finally, future research topics are discussed. Fundamental oxy-fuel combustion research may provide an ideal alternative for validating CFD simulations toward industrial applications.  相似文献   

7.
Multilayers of TiC/α-Al2O3 consisting of three (1 μm thick) alumina layers separated by thin (∼10 nm) oxidized TiC layers have been deposited onto c-, a- and r-surfaces of single crystals of α-Al2O3 by chemical vapour deposition (CVD). The aim of this paper is to describe and compare the detailed microstructure of the different multilayer coatings by using transmission electron microscopy (TEM).The general microstructure of the alumina layers is very different when deposited onto different surfaces of α-Al2O3 single crystal substrates. On the c- and a-surfaces the alumina layers grow evenly resulting in growth of single crystal layers of TiC and alumina throughout the coating. However, when deposited on the r-surface the alumina layers generally grow unevenly. No pores are observed within the alumina layers, while a small number of pores are found at the interfaces below the TiC layers. The TiC and alumina layers grow epitaxially on the c- and a-surface substrates. On the r-surface, epitaxy is present only at some rare locations. The TiC layers were oxidized in situ for 2 min in CO2/H2 prior to the alumina layer deposition. For all three samples chemical analyses show that the whole TiC layer is oxidized. On the c- and a-surfaces the TiC layer was oxidized to an fcc TiCO phase. On the r-surface the oxidation stage resulted in a transformation of the initially deposited fcc TiC to a monoclinic TiCO phase, which appears to be a modified TiO structure with a high carbon content.  相似文献   

8.
During coal combustion, char chemical reaction is the slowest step, particularly in the last burnout stage, where the char consists of small amounts of carbon in a predominant ash framework. Existing kinetics models tend to deviate from experimental measurements of late char burnout due to the incomplete treatment of ash effects. Ash can improve pore evolution through vaporization, hinder oxygen transport by forming an ash film, and reduce active carbon sites and available surface per unit volume by penetrating into the char matrix. In this work, a sophisticated kinetics model, focusing on these three ash evolution mechanisms (ash vaporization, ash film, and ash dilution) during pulverized coal (PC) char combustion, is developed by integrating them into a thorough mechanistic picture. Further, a detailed comparison of the three distinct ash effects on PC char conversion during air (O2/N2) and oxy-fuel (O2/CO2) combustion is performed. For the modeled coal, the mass of ash vaporization is approximate 3 orders less than the mass of ash remaining, which participates in ash dilution and ash film formation, both in O2/N2 and O2/CO2 atmospheres. The influence of these phenomena on burnout time follows the order: ash dilution > ash film > ash vaporization. The influence of ash vaporization on burnout time is minor, but through interactions with the ash dilution and ash film forming processes it can have an impact at high extents of burnout, particularly in O2/CO2 atmospheres. In O2/N2 atmospheres the residual ash predominately exists as an ash film, whereas it mainly exists as diluted ash in the char matrix in O2/CO2 atmospheres. The residual ash particle is encased by a thick film when the ash film forming fraction is high (low ash dilution fraction). These results provide in-depth insights into the conversion of PC char and further utilization of the residual ash.  相似文献   

9.
The influence of nitrogen on the aluminum droplet combustion under forced convection conditions has been studied. An aerodynamic levitation technique of millimetric size liquid droplets heated with a CO2 laser has been adopted to characterize the combustion of aluminum droplets and, in particular, to observe the surface phenomena. The determination of the burning rate and of the droplet temperature in several atmospheres (H2O/O2, H2O/Ar, H2O/N2, and air) has shown that they depend only on the nature and concentration of the oxidizers (O2 and H2O); a comparison of experiments in nitrogen and in argon containing mixtures demonstrated that N2 did not influence the gas phase combustion. However, for nitrogen containing atmospheres we observed the formation of solid aluminum nitride (AlN) at the droplet surface after a latency time depending on the nitrogen pressure. AlN first interacts with the oxide cap producing an aluminum oxynitride, then completely covers the droplet, and finally prevents combustion. The existence of a latency time varying with the nitrogen pressure suggests that the AlN formation is controlled by heterogeneous kinetics. The phenomenon of oxide cap regression during combustion was also observed in all gases, and it is attributed to a chemical decomposition process of alumina by aluminum forming gaseous AlxOy species. Therefore, nitrogen effects are significant at the droplet surface rather than in the gas phase, and it is suggested that N2 is probably one of the main species causing the manifestation of unsteady processes during aluminum droplet burning.  相似文献   

10.
Alumina (Al2O3) nanowires, nanorods, and nanowalls have been prepared from anodic aluminum oxide (AAO) templates by chemical etching in NaOH solution. Heating the template prior to etching is crucial to the morphology of subsequent prepared alumina nanostructures, which greatly depend on the phases of the AAO templates. It has been found that the templates with amorphous Al2O3, γ-Al2O3, and α+γ-Al2O3 phases will grow nanowires, nanorods, and nanowalls, respectively. A possible mechanism for forming different alumina nanostructures is proposed.  相似文献   

11.
In this paper, the correlations between coal/char fragmentation and fly ash formation during pulverized coal combustion are investigated. We observed an explosion-like fragmentation of Zhundong coal in the early devolatilization stage by means of high-speed photography in the Hencken flat-flame burner. While high ash-fusion (HAF) bituminous and coal-derived char samples only undergo gentle perimeter fragmentation in the char burning stage. Simultaneously, combustion experiments of two kinds of coals were conducted in a 25?kW down-fired combustor. The particle size distributions (PSDs) of both fine particulates (PM1-10) and bulk fly ash (PM10+) were measured by Electrical Low Pressure Impactor (ELPI) and Malvern Mastersizer 2000, respectively. The results show that the mass PSD of residual fly ash (PM1+) from Zhundong coal exhibits a bi-modal shape with two peaks located at 14?µm and 102?µm, whereas that from HAF coal only possesses a single peak at 74?µm. A hybrid model accounting for multiple-route ash formation processes is developed to predict the PSD of fly ash during coal combustion. By incorporating coal/char fragmentation sub-models, the simulation can quantitatively reproduce the measured PM1+ PSDs for different kinds of coals. The sensitivity analysis further reveals that the bi-modal mass distribution of PM1+ intrinsically results from the coal fragmentation during devolatilization.  相似文献   

12.
Four British coal samples are shown to have pyrite (FeS2) as the principal iron-containing material. On combustion under conditions approximating those in commercial boilers, stoichiometric FeS is formed by pyrolysis and magnetite (Fe3O4) by oxidation. No haematite (Fe2O3) was found, but an additional phase is present which appears to be a high-spin iron(II) sulphide.  相似文献   

13.
Torrefied wood originating from beetle-killed trees is an abundant biomass fuel that can be co-fired with coal for power generation. In this work, pulverized torrefied wood, a bituminous coal (Sufco coal) and their blended fuel with a mixing ratio of 50/50 wt.%, are burned in a 100-kW rated laboratory combustor under similar conditions. Ash aerosols in the flue gas and ash deposits on a temperature-controlled surface are sampled during combustion of the three fuels. Results show that ash formation and deposition for wood combustion are notably different from those for coal combustion, revealing different mechanisms. Compared to the coal, the low-ash torrefied wood produces low concentrations of fly ash in the flue gas but significantly increased yields (per input ash) of ash that has been vaporized. All the mineral elements including the semi- or non-volatile metals in the wood are found to be more readily partitioned into the PM10 ash than those in the coal. The inside layer deposits sticking to the surface and the loosely bound outside deposits exposed to the gas both show a linear growth in weight during torrefied wood test. Unlike coal combustion, in which the concentration of (vaporized) ash PM1 controls the inside deposition rate, wood combustion shows that the formation of porous bulky deposits by the condensed residual ash dominates the inside deposition process. Co-firing removes these differences between the wood and coal, making the blended fuel to have more similar fly ash characteristics and ash deposition behavior to those of the bituminous coal. In addition, results also show some beneficial effects of co-firing coal with torrefied wood, including reduction of the total deposition rate and the minimization of corrosive alkali species produced by wood.  相似文献   

14.
The correlation between temperature treatment conditions and the ratio of components in nanostructured fibrous powders with a composition of ZrO2-Y2O3-Al2O3 and their porous crystal structure and physicochemical properties is studied. The dependences of the ratio between zirconia tetragonal and monoclynic phases on the treatment temperature and the alumina content are found to have a nonmonotonic character. The growth of zirconia crystallite size is suppressed by introduced nanocrystalline alumina in a temperature range of 600–1200°C, which is caused by the processes of ternary solid solution formation. The bulk and picnometric density values of materials are proportional to the temperature of heat treatment. The temperature dependence of the specific surface and the size of oxide grain particles has an inversely proportional character. With increasing alumina content in the powders, the specific surface increases, while the picnometric and bulk densities decrease.  相似文献   

15.
高晓林  王仕发  向霞  刘春明  祖小涛 《物理学报》2013,62(1):16105-016105
采用聚丙烯酰胺凝胶法制备了大孔α-氧化铝材料.利用X射线衍射仪、扫描电镜、荧光分光光度计表征了所制备的氧化铝样品.结果表明,在1150℃烧结温度下可获得高纯的α-氧化铝陶瓷材料,其形貌呈类电路板型(monolithic)大孔结构.荧光光谱测试分析发现,在228 nm波长的光激发下,其荧光光谱在300-400 nm范围内由两个主发射带组成,其峰值分别位于330 nm和365nm.基于实验结果,探讨了多孔氧化铝的形成机理和发光机制.  相似文献   

16.
The principle aim of this investigation was to determine the effect that minerals and mineral associations in dense medium coal fractions have on the ash fusion temperature (AFT) of coal, where the mineral matter associated with coal undergoes transformations during gasification. Samples from three coal sources used by Sasol for gasification were acquired and a comprehensive characterisation on all dense medium fractions was conducted, including proximate analyses, AFT, ash oxide analyses, XRD and Mössbauer spectroscopy. From the proximate analyses, the ash content was the highest for the higher density fractions, with an accompanying decrease in fixed carbon content, consistent with the XRD and Mössbauer analyses. From the ash oxide analyses, it was evident that at higher relative densities more Fe2O3 and SiO2 were present than in the lower density samples. From XRD analyses, the low density fractions contained calcite and dolomite. Pyrite and quartz were found in the higher density fractions whereas kaolinite occurred in all density separated fractions. From the different techniques it follows that with the Fe-content high in high density fractions, the AFT was low. When Ca and other basic oxide levels were abundant in low density fractions, the AFT was low and when the SiO2/Al2O3 ratio was high in high density fractions the AFT increased.  相似文献   

17.
Micro-arc oxidation (MAO) is not applicable to prepare ceramic coatings on the surface of steel directly. In this work, hybrid method of MAO and hot-dipping aluminum (HDA) were employed to fabricate composite ceramic coatings on the surface of Q235 steel. The evolution of MAO coatings, such as growth rate, thickness of the total coatings, ingrown and outgrown coatings, cross section and surface morphologies and phase composition of the ceramic coatings were studied. The results indicate that both the current density and the processing time can affect the total thickness, the growth rate and the ratio of ingrown and outgrown thickness of the ceramic coatings. The total thickness, outgrown thickness and growth rate have maximum values with the processing time prolonged. The time when the maximum value appears decreases and the ingrown dominant turns to outgrown dominant little by little with the current density increasing. The composite coatings obtained by this hybrid method consists of three layers from inside to outside, i.e. Fe-Al alloy layer next to the substrate, aluminum layer between the Fe-Al layer and the ceramic coatings which is as the top exterior layer. Metallurgical bonding was observed between every of the two layers. There are many micro-pores and micro-cracks, which act as discharge channels and result of quick and non-uniform cooling of melted sections in the MAO coatings. The phase composition of the ceramic coatings is mainly composed of amorphous phase and crystal Al2O3 oxides. The crystal Al2O3 phase includes κ-Al2O3, θ-Al2O3 and β-Al2O3. Compared with the others, the β-Al2O3 content is the least. The MAO process can be divided into three periods, namely the common anodic oxidation stage, the stable MAO stage and the ceramic coatings destroyed stage. The exterior loose part of the ceramic coatings was destroyed badly in the last period which should be avoided during the MAO process.  相似文献   

18.
This paper presents comparative experimental studies of the morphology and elemental composition of fly ash particles from coal- and biomass-fired boilers, deposited in each stage of 3-stage electrostatic precipitators (ESPs). It was shown that fly ash morphology, its physical properties, and the percentage of elements in the fly ash taken from each stage of ESP depend on the kind of fuel. The biomass fly ash contains many irregular large particles, which are pieces of unburned wood. Bulk density of biomass fly ash is on average lower than that of coal fly ash, and drastically decreases in the second and third stages of ESP. The resistivity, measured at electric field of 4 kV/cm, of fly ash from biomass-fired boilers is much lower than that from coal, and can be below 102 Ω m, whereas from coal, except the first stage, varies in the range from 107 to 1010 Ω m. The low resistivity of coal fly ash in the first stage of ESP results from high carbon content, and of biomass is probably an effect of additional high percentage of potassium, calcium and sodium sulfates. The percentage of Si, Al, Na, Fe, and Ti in fly ash from coal-fired boilers is much higher than from biomass, and in the opposite, the percentage of Mg, K, Ca, Mn, Mo, S, Cl, and P in biomass ash exceeds that in coal fly ash. Potential detrimental effects of biomass combustion products (salts, acids, tar) leaving the boiler on the construction elements of the electrostatic precipitator, including electrodes and HV insulators have been discussed in this paper. It was concluded that the long-term effects of biomass co-firing on the electrostatic precipitator performance, including the collection efficiency, have not been sufficiently studied in the literature and these issues require further detailed investigations.  相似文献   

19.
The paper reports on thermal stability of alumina thin films containing γ-Al2O3 phase and its conversion to a thermodynamically stable α-Al2O3 phase during a post-deposition equilibrium thermal annealing. The films were prepared by reactive magnetron sputtering and subsequently post-deposition annealing was carried out in air at temperatures ranging from 700 °C to 1150 °C and annealing times up to 5 h using a thermogravimetric system. The evolution of the structure was investigated by means of X-ray diffraction after cooling down of the films. It was found that (1) the nanocrystalline γ-Al2O3 phase in the films is thermally stable up to 1000 °C even after 5 h of annealing, (2) the nanocrystalline θ-Al2O3 phase was observed in a narrow time and temperature region at ≥1050 °C, and (3) annealing at 1100 °C for 2 h resulted in a dominance of the α-Al2O3 phase only in the films with a sufficient thickness.  相似文献   

20.
Alumina ceramic coatings were fabricated on 304 stainless steel by cathodic plasma electrolytic deposition (CPED). Influence of treating frequency of the power supply on the microstructure and properties of the coatings were studied. The results indicated that coatings obtained at various frequencies on 304 stainless steels were all composed of α-Al2O3 and γ-Al2O3, and α-Al2O3 was the dominant phase. The contents of α-Al2O3 decreased gradually in a very small rate with increasing the frequency and γ-Al2O3 gradually increased. The surface of alumina ceramic coating was porous. With increasing the frequency, the coating surface gradually became less rough and more compact, resulting in low surface roughness. The bonding strength of Al2O3 coating was higher than 22 MPa and was not strongly affected by treating frequency. With increasing the frequency, the alumina coated steels showed better and gradually increasing corrosion resistance than the uncoated one in 3.5% NaCl solution. The coating steel with desirable corrosion resistance was obtained at 800 Hz whose corrosion current potential and corrosion density were −0.237 V and 7.367 × 10−8 A/cm2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号