首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 594 毫秒
1.
Soot formation characteristics of a lab-scale pulverized coal flame were investigated by performing carefully controlled laser diagnostics. The spatial distributions of soot volume fraction and the pulverized coal particles were measured simultaneously by laser induced incandescence (LII) and Mie scattering imaging, respectively. In addition, the radial distributions of the soot volume fraction were compared with the OH radical fluorescence, gas temperature and oxygen concentration obtained in our previous studies [1], [2]. The results indicated that the laser pulse fluence used for LII measurement should be carefully controlled to measure the soot volume fraction in pulverized coal flames. To precisely measure the soot volume fraction in pulverized coal flames using LII, it is necessary to adjust the laser pulse fluence so that it is sufficiently high to heat up all the soot particles to the sublimation temperature but also sufficiently low to avoid including a too large of a change in the morphology of the soot particles and the superposition of the LII signal from the pulverized coal particles on that from the soot particles. It was also found that the radial position of the peak LII signal intensity was located between the positions of the peak Mie scattering signal intensity and peak OH radical signal intensity. The region, in which LII signal, OH radical fluorescence and Mie scattering coexisted, expanded with increasing height above the burner port. It was also found that the soot formation in pulverized coal flames was enhanced at locations where the conditions of high temperature, low oxygen concentration and the existence of pulverized coal particles were satisfied simultaneously.  相似文献   

2.
本文利用Hencken型的平面燃烧器,以激光诱导白炽光(LII)和平面激光诱导荧光(PLIF)系统对燃煤碳烟的生成进行在线测量。对直径4—12mm的煤柱颗粒开放式燃烧的OH和碳烟颗粒进行PLIF和LII的实验结果表明,燃煤形成碳烟和挥发分火焰几乎同时出现和消失,煤柱产生碳烟的持续时间约和煤柱颗粒的粒径的1.8次方呈正比...  相似文献   

3.
In this study, the soot formation characteristics in a pulverized-coal combustion field formed by a 4 kW Central Research Institute of Electric Power Industry (CRIEPI) jet burner were predicted by large eddy simulation (LES) employing a tabulated-devolatilization-process model (TDP model) [N. Hashimoto et al., Combust. Flame 159 (2012) 353–366]. This model enables to take into account the effect of coal particle heating rate on coal pyrolysis. The coal-derived soot formation model proposed by Brown and Fletcher [A. L. Brown and T. H. Fletcher, Energy Fuels 12 (1998) 745–757] was employed in the LES. A comparison between the data predicted by LES and the soot volume fraction distribution data measured by laser induced incandescence confirmed that the soot formation characteristics in the coal combustion field of the CRIEPI burner can be accurately predicted by LES. A detailed analysis of the data predicted by LES showed that the soot particle distribution in this burner is narrow because the net soot formation rate is negative on both sides of the base of the soot volume fraction. At these positions, soot particles diffused from the peak position of soot volume fraction are oxidized due to a relatively high oxygen concentration. Finally, the effect of soot radiation on the predicted gas temperature distribution was examined by comparing the simulation results obtained with and without soot radiation. This comparison showed that the maximum gas temperature predicted by the simulation performed with soot radiation was over 100 K lower than that predicted by the simulation performed without soot radiation. From result strongly suggests the importance of considering a soot formation model for performing numerical simulations of a pulverized-coal combustion filed.  相似文献   

4.
Strategies for spatially resolved soot volume-fraction measurements have been investigated in sooting laboratory flames with known soot characteristics. Two techniques were compared: Laser-Induced Fluorescence in C2 from Laser-Vaporized Soot (LIF(C2)LVS), and Laser-Induced Incandescence of soot (LII). The LII signal is the increased temperature radiation from soot particles which have been heated to temperatures of several thousand degrees as a consequence of absorption of laser radiation. The LIF(C2)LVS technique is based on the production of C2 radicals from laser-vaporized soot which occurs for laser intensities ≥107 W/cm2. A laser wavelength is chosen such that besides vaporizizng the soot, it also excites the C2 radicals, and the subsequent C2 fluorescence signal is detected. The signals from both techniques showed good correlation with soot volume fractions in the studied flame. The dependence of the signals on experimental parameters was studied, and the influence of interfering radiation, such as background flame luminosity and fluorescence from polyaromatic hydrocarbons, on studied signals was established. The potential of the two techniques for imaging of soot volume fractions in laboratory flames was demonstrated. Advantages and disadvantages of the studied techniques are discussed.  相似文献   

5.
Recent advances in the field of laser desorption/laser ionization mass spectrometry (LD/LI/MS) have renewed interest in these separation methods for fast analysis of chemical species adsorbed on soot particles. These techniques provide mass-separation of the desorbed phase with high selectivity and sensitivity and require very small soot samples. Combining LD/LI/MS with in situ measurements of soot and gaseous species is very promising for a better understanding of the early stage of soot growth in flames. In this work, three lightly sooting laminar jet flames (a methane diffusion flame and two premixed acetylene flames of equivalence ratio (?) = 2.9 and 3.5) were investigated by combining prompt and 50 ns-delayed laser-induced incandescence (LII) for spatially resolved measurements of soot volume fraction (fv) and laser-induced fluorescence (LIF) of polycyclic aromatic hydrocarbons (PAH). Soot and PAH calibration is performed by two-colour cavity ring-down spectroscopy (CRDS) at 1064 and 532 nm. Soot particles were sampled in the flames and analysed by LD/LI/Time-of-flight- MS. Soot samples are cooled to −170 °C to avoid adsorbed phase sublimation (under high vacuum in the TOF-MS). Our set-up is novel because of its ability to measure very low concentration of soot and PAH together with the ability to identify a large mass range of PAHs adsorbed on soot, especially volatile two-rings and three-rings PAHs. Studied flames exhibited a peak fv ranging from 15 ppb (acetylene, ? = 2.9) to 470 ppb (acetylene, ? = 3.5). Different mass spectra were found in the three flames, each exhibiting one predominant PAH mass; 202 amu (4-rings) in methane, 178 amu (3-rings) in acetylene,? = 2.9 and 128 amu (2-rings) in acetylene, ? = 3.5. These variations with flame condition contrasts with other recent studies and is discussed. The other PAH masses ranged from 102 (C8H6) to 424 amu (C34H16) and are well predicted by the stabilomer grid of Stein and Farr.  相似文献   

6.
脉冲激光诱导光纤损伤的测试方法   总被引:3,自引:0,他引:3       下载免费PDF全文
 针对传能光纤的高峰值功率激光损伤过程,研究了光纤损伤测试方法。实验装置搭建中增加了定位孔,有利于激光注入光纤对准;分别采用刀口法和CCD法对入射光束不同截面处光斑大小进行了测量,两种方法的测量结果基本一致。参考GJB1487-92激光光学元件测试方法和ISO11245光学表面的激光诱导损伤阈值测试方法,采用N-ON-1损伤测试和有效光斑面积计算方法对芯径为400 μm的石英包层阶跃折射率石英光纤进行了损伤阈值测试。实验发现:光纤损伤部位全部为入射端面,利用200倍显微镜观察光纤端面,出现明显永久性损伤点。最后采用统计学原理和线性拟合等方法得出测试光纤的端面零概率损伤阈值为3.85 GW/cm2。  相似文献   

7.
建立了激光诱导偏振光谱(LIPS)和激光诱导荧光(LIF)联合的燃烧流场诊断系统,测量了CH4/AIR预混火焰中心不同高度处的OH荧光光谱和激光诱导偏振光谱,计算了OH的浓度及燃烧场温度分布。分析了燃烧炉表面对荧光收集效率的影响,并对两种技术的测量数据进行了分析比对,获得了火焰中心OH密度的分布规律。实验结果表明,联合LIPS和LIF两种技术测量CH4/AIR预混火焰参数是可行的,两种技术测量结果的一致性较好,OH浓度的相对偏差小于5%,温度的相对偏差小于8%。  相似文献   

8.
Soot formation is compared in turbulent diffusion flames burning a commercial Diesel and two Diesel surrogates containing n-decane and α-methylnaphthalene. A burner equipped with a high-efficiency atomisation system has been specially designed and allows the stabilisation of liquid fuels flames with similar hydrodynamics conditions. The initial surrogate composition (70% n-decane, 30% α-methylnaphthalene) was previously used in the literature to simulate combustion in Diesel engines. In this work, a direct comparison of Diesel and surrogates soot tendencies is undertaken and relies on soot and fluorescent species mappings obtained respectively by Laser-Induced Incandescence (LII) at 1064 nm and Laser-Induced Fluorescence at 532 nm. LIF was assigned to soot precursors and mainly to high-number ring Polycyclic Aromatic Hydrocarbons (PAH). The initial surrogate was found to form 40% more soot than the tested Diesel. Consequently, a second surrogate containing a lower α-methylnaphthalene concentration (20%) has been formulated. That composition which presents a Threshold Soot Index (TSI) very close to Diesel one is also consistent with our Diesel composition that indicates a relatively low PAH content. The spatially resolved measurements of soot and fluorescent soot precursors are quite identical (in shape and intensity) in the Diesel and in the second surrogate flames. Furthermore the concordance of the LII temporal decays suggests that a similar growth of the primary soot particles has occurred for Diesel and surrogates. In addition, the comparison of the LII fluence curves indicates that physical/optical properties of soot contained in the different flames might be similar. The chemical composition present at the surface of soot particles collected in Diesel and surrogate flames has been obtained by laser-desorption ionisation time-of-flight mass spectrometry. An important difference is found between Diesel and surrogate samples indicating the influence of the fuel composition on soot content.  相似文献   

9.
The effect of multiple laser pulses reaching soot particles before an actual laser-induced incandescence (LII) measurement is investigated in order to gain some insights on soot morphological and fine structure changes due to rapid laser heating. Soot, extracted from a premixed and a quenched diffusion flames, is flowing through a tubular cell and undergoes a variable number of pulses at different fluence. The response of soot is studied by the two-color LII technique. Transmission electron microscopy (TEM) analysis of laser-modified soot aggregates from the diffusion flame is also presented. The results indicate that even at low laser fluences a permanent soot transformation is induced causing an increase in the absorption function E(m). This is interpreted as an induced graphitization of soot particles by the laser pulse heating. At high fluences the vaporization process and a profound restructuring of soot particles affect the morphology of the aggregates. Soot from diffusion and premixed flames behaves in a similar way although this similarity occurs at different fluence levels indicating a different initial fine structure of soot particles.  相似文献   

10.
 研究了超声清洗和激光预处理两种后处理手段对减反膜的损伤特性的影响。采用电子束蒸发技术制备了1 064 nm减反膜,利用超声清洗及激光预处理的方法分别对样品进行处理,并对处理前后的样品分别进行激光损伤阈值测试及破斑深度测量。结果表明:处理后减反膜的损伤阈值均有所提升,但激光预处理的阈值增强效果更加明显;超声清洗前后的破斑深度没有大的变化,而激光预处理后的破斑深度比处理前浅得多;原因在于超声清洗只能去除表面杂质,激光预处理可减少和抑制膜层内较深处的缺陷。  相似文献   

11.
The material response following nanosecond, UV laser induced breakdown inside of the exit surface of fused silica is investigated using multimodal time resolved microscopy. The study spans up to about 75 ns delay from the onset of material modification during the laser pulse through the observation of material ejection. A number of distinct processes were identified, including: a) the onset of optical absorption in the material arising from the buildup of an electronic excitation, b) the expansion of the hot modified region (plasma) along the surface and inside the bulk, c) the formation of radial and circumferential cracks, d) the swelling of the affected region on the surface and, e) the onset of ejection of material clusters at about 30 ns delay and its progression to a well‐defined jet by about 75 ns delay. Limited theoretical modeling is used to aid the interpretation of the data.  相似文献   

12.
In-cylinder and exhaust soot particle size measurements were carried out using time-resolved laser induced incandescence and electrical mobility spectrometer techniques in a single cylinder optical diesel engine and multi-cylinder high-speed diesel engine. The temporal decay of the laser induced incandescence signal from a polydisperse nanoparticle ensemble of soot during transient diesel combustion is shown to be described by both a single-lognormal distribution as well as multi-lognormal size distribution. However, a multi-lognormal particle size distribution is introduced in the existing model for a comprehensive characterisation and realistic reconstruction of the size distribution. Detailed theoretical analysis of multi-lognormal size distribution along with its application to the experimentally measured soot particle size is validated in this work. These results were also qualitatively compared and independently verified by the experimental results obtained by the electrical mobility spectrometer and published transmission electron microscopy data. These findings reveal that the in-cylinder and the exhaust soot particle size distributions in engines are better represented by a multi-lognormal size distribution.  相似文献   

13.
An experimental and numerical study on particles inception and growth is performed in opposed-flow diffusion flames of ethylene and air characterized by different sooting tendencies. Spectrally resolved UV-visible laser induced fluorescence, laser induced incandescence and laser light scattering measurements are used to characterize different classes of combustion-generated compounds. A detailed kinetic model accounting for both gas-phase and particle formation is used. Comparison between experimental results and numerical predictions gives a qualitative view of the mechanism of particle formation in opposed-flow flames.Particle inception is the result of both chemical growth and coagulation of aromatic compounds. In the region close to the flame front where the temperature is relatively high and radicals are abundant, the particle inception is due to a chemical growth mechanism by which aromatic molecules add aromatic radicals leading to the formation of biphenyl-like structures. The growth process continues as high-molecular mass aromatics are moved away from the flame zone towards the stagnation plane by the addition of acetylene and other aromatics forming particles of increasing sizes. Graphitization of these particles and thermal annealing lead to the formation of soot particles. At relatively lower temperatures, found across the stagnation plane, particles growth still occurs and it is mainly due to a process of physical coagulation of PAHs.The experimental and numerical results obtained in this work demonstrate and explain the sensibility of inception and growth of particles to radical concentration and temperature in opposed-flow flame configurations.  相似文献   

14.
Bacteria Spectra Obtained by Laser Induced Fluorescence   总被引:1,自引:0,他引:1  
Laser-induced fluorescence technique (LIF) is described for getting bacteria spectra in the liquid phase. An excimer laser pumping a dye-laser and a doubly frequency laser have been used, exciting the bacteria to 290 nm, and using a monochromator, 600 lines/mm grating, with a CCD to measure and obtain the fluorescence spectra. In this study, a laser induced fluorescence system to measure certain bioaerosols (bacteria) was optimised. Finally, a small bacteria fluorescence spectra collection is presented.  相似文献   

15.
激光波长对水中金属元素激光诱导击穿光谱探测的影响   总被引:4,自引:0,他引:4  
针对激光诱导击穿光谱(LIBS)在海洋应用中的问题,对1 064和532nm两个激发波长下水中LIBS光谱特性进行探测分析,以比较其烧蚀效果。通过激光诱导等离子体的时间分辨光谱,分析水下等离子体电子密度随时间的演化规律,1 064nm激光诱导等离子体寿命约为1 200ns,而532nm激光激发情况下等离子体寿命仅约为600ns。基于光在水中的传输特性和LIBS的实验结果,建立了获得最佳LIBS探测效果所需的入水前激光脉冲能量Eiopt(r)与探测距离r的关系,并应用到水下原位探测的模拟分析。结果表明,当探测距离不大于5cm时,所需的入水前1 064nm激光单脉冲能量小于100mJ,该激发波长可用于LIBS的水下探测;当探测距离增至10cm时,所需的入水前532nm激光单脉冲能量只需30mJ左右。因此,当原位探测距离增加时,则需考虑选择532nm激光作为烧蚀光源。  相似文献   

16.
An experimental investigation on the induced damage by accumulative pulses generated by a Nd:YAG laser beam focused into the bulk of the BK7 glass is reported in this work. The laser was operated at the single-pulse damage energy threshold of the sample. The optical detonation generates a shock wave emission and microcrack formation. The induced photoacoustic wave emerging from the sample was monitored by piezoelectric detection. These signals provide a simple, reliable and highly sensitive indication of damage, processes involved, and the most appropriate laser parameters for two- and three-dimensional engraving.  相似文献   

17.
采用密度矩阵方法 ,推导了从激光诱导荧光 (LIF)强度中抽出光碎片取向参数的表达式 .光碎片的取向由分子态多极矩描述 .用于解离母分子和激发碎片分子的激光均为线偏振光 ,而探测荧光为非偏振光 .激光诱导荧光强度是光碎片分子初始态多极矩、线强度因子和解离—激发几何因子的函数 .光碎片的取向参数可以由测量荧光偏振比和计算动力学因子而获得  相似文献   

18.
In the near-burner region of pulverized coal burners, two zones exist, with very different oxygen concentrations. The first zone is a locally reducing environment, caused by the fast release of volatiles from a region of dense coal particles, and the second zone, which is surrounding the first zone, is a hot oxidizing environment. The transition of coal particles from the reducing zone to the oxidizing zone affects early stage coal combustion characteristics, such as devolatilization, ignition and particle temperature history. In this work, we used a two-stage Hencken flat-flame burner to simulate the conditions that coal particles experience in practical combustors when they transition from a reducing environment to an oxidizing environments. The composition of the reducing environment was chosen to approximate that of a typical coal volatile. Three oxygen concentrations (5, 10 and 15 vol%) in the “ambient” oxidizing environment were tested, corresponding to those at different distances downstream from a commercial burner. The corresponding gas temperatures for the oxidizing environments were adjusted for the different oxygen concentrations such that the “volatile” flame temperatures were the same, as this is what would be expected in a commercial combustor. High speed videography was used to obtain the ignition characteristics, and RGB color pyrometry was used to measure particle surface temperatures. Two different sizes of coal particles were used. It is found that when particles undergo a reducing-to-oxidizing transition at high temperatures, the particles are preheated such that the critical factor for ignition delay is point at which the particle is in the presence of oxygen, not the concentration of oxygen. The ignition delay of large particles is found to be 53% longer than that of small particles due to their higher thermal mass and slower devolatilization. The oxygen concentration in the ambient have a negligible effect on early-stage particle temperatures.  相似文献   

19.
以Nd:YAG的二倍频532 nm激光为激发光源,用激光诱导荧光(LIF)方法对几种不同水体中溶解有机物(DOM)和叶绿素a(Chl-a)的荧光光谱进行了测量和分析;并以水体对532 nm激发光的散射进行了水体浊度特性的研究,给出了散射光强度与浊度的关系曲线;研究结果表明,用此种方法测量水体浊度和污染物浓度可对水体质量进行有效的监测。  相似文献   

20.
Although the two-color laser-induced incandescence technique (2C-LII) has proved to be a significant tool for soot diagnostics, many efforts are still required to gain a whole understanding of the chemical and physical processes involved. Time-resolved two-color LII measurements are carried out in a rich ethylene/air premixed flame at different heights above the burner and by changing the laser fluence. The prompt LII at two wavelengths and the corresponding soot incandescence temperature are obtained at different stages of the soot growth and under different laser irradiations. The decay rate of the LII signals, as a method for soot sizing, is investigated at different laser fluence. The time-resolved LII curves, obtained in the low laser fluence regime, are analyzed by a numerical simulation, available on the web. By considering the gas/particle initial temperature obtained with thermocouple measurements and by knowing soot particle diameter with previous TEM and extinction/scattering measurements, information about soot parameters, such as absorption function and thermal accommodation coefficient are obtained. The presence of the so-called young or mature soot along the flame height is strictly related to different optical and heat-exchange properties necessary to fit all the experimental data available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号