首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
Late-evaporating liquid fuel wall-films are considered a major source of soot in spark-ignition direct-injection (SIDI) engines. In this study, a direct-injection model experiment was developed to visualize soot formation in the vicinity of evaporating fuel films. Isooctane is injected by a multi-hole injector into the optically accessible part of a constant-flow facility at atmospheric pressure. Some of the liquid fuel impinges on the quartz-glass windows and forms fuel films. After spark ignition, a turbulent flame front propagates through the chamber, and subsequently sooting combustion is detected near the fuel films. Overlapping laser light sheets at 532 and 1064 nm excite laser-induced fluorescence (LIF) of polycyclic aromatic hydrocarbons (PAH) -potential soot precursors- and laser-induced incandescence (LII) of soot, respectively. The 532 nm light sheet has low fluence to avoid the excitation of LII. The LII and LIF signals are detected simultaneously and spectrally separated on two cameras. In complementary line-of-sight imaging, the fuel spray, chemiluminescence, and soot incandescence are captured with a high-speed color camera. In separate experiments, toluene is added to the isooctane as a fluorescent tracer and excited by pulsed 266 nm flood illumination. From images of the LIF signal, the fuel-films’ thickness and mass evolutions are evaluated. The films survive the entire combustion event. PAH LIF is found in close vicinity of the evaporating fuel films. Soot is found spatially separated from, but adjacent to the PAH, both with high spatial intermittency. Average images additionally indicate that soot is formed with a much higher spatial intermittency than PAH. Images from the color camera show soot incandescence earlier and in a similar region compared to soot LII. Chemiluminescence downstream of the soot-forming region is thought to indicate the subsequent oxidation of fuel, soot, and PAH.  相似文献   

2.
Soot formation is compared in turbulent diffusion flames burning a commercial Diesel and two Diesel surrogates containing n-decane and α-methylnaphthalene. A burner equipped with a high-efficiency atomisation system has been specially designed and allows the stabilisation of liquid fuels flames with similar hydrodynamics conditions. The initial surrogate composition (70% n-decane, 30% α-methylnaphthalene) was previously used in the literature to simulate combustion in Diesel engines. In this work, a direct comparison of Diesel and surrogates soot tendencies is undertaken and relies on soot and fluorescent species mappings obtained respectively by Laser-Induced Incandescence (LII) at 1064 nm and Laser-Induced Fluorescence at 532 nm. LIF was assigned to soot precursors and mainly to high-number ring Polycyclic Aromatic Hydrocarbons (PAH). The initial surrogate was found to form 40% more soot than the tested Diesel. Consequently, a second surrogate containing a lower α-methylnaphthalene concentration (20%) has been formulated. That composition which presents a Threshold Soot Index (TSI) very close to Diesel one is also consistent with our Diesel composition that indicates a relatively low PAH content. The spatially resolved measurements of soot and fluorescent soot precursors are quite identical (in shape and intensity) in the Diesel and in the second surrogate flames. Furthermore the concordance of the LII temporal decays suggests that a similar growth of the primary soot particles has occurred for Diesel and surrogates. In addition, the comparison of the LII fluence curves indicates that physical/optical properties of soot contained in the different flames might be similar. The chemical composition present at the surface of soot particles collected in Diesel and surrogate flames has been obtained by laser-desorption ionisation time-of-flight mass spectrometry. An important difference is found between Diesel and surrogate samples indicating the influence of the fuel composition on soot content.  相似文献   

3.
Planar laser-induced fluorescence (LIF) of toluene has been applied in an optical engine and a high-pressure cell, to determine temperatures of fuel sprays and in-cylinder vapors. The method relies on a redshift of the toluene LIF emission spectrum with increasing temperature. Toluene fluorescence is recorded simultaneously in two disjunct wavelength bands by a two-camera setup. After calibration, the pixel-by-pixel LIF signal ratio is a proxy for the local temperature. A detailed measurement procedure is presented to minimize measurement inaccuracies and to improve precision. n-Heptane is used as the base fuel and 10 % of toluene is added as a tracer. The toluene LIF method is capable of measuring temperatures up to 700 K; above that the signal becomes too weak. The precision of the spray temperature measurements is 4 % and the spatial resolution 1.3 mm. We pay particular attention to the construction of the calibration curve that is required to translate LIF signal ratios into temperature, and to possible limitations in the portability of this curve between different setups. The engine results are compared to those obtained in a constant-volume high-pressure cell, and the fuel spray results obtained in the high-pressure cell are also compared to LES simulations. We find that the hot ambient gas entrained by the head vortex gives rise to a hot zone on the spray axis.  相似文献   

4.
In direct-injection spark-ignition engines, fuel films formed on the piston surface due to impinging sprays are a major source of soot. Previous studies investigating the fuel films and their correlation to soot production were mostly performed in model experiments or optical engines. These experiments have different operating conditions compared to commercial engines. In this work, fuel films and soot are visualized in an all-metal engine with endoscopic access via laser-induced fluorescence (LIF) and natural incandescence, respectively. Gasoline and a mixture of isooctane/toluene were used as fuel for the experiments. The fuel films were excited by 266 nm laser pulses and visualized by an intensified CCD camera through a modular UV endoscope. Gasoline yielded much higher signal-to-noise ratio, and this fuel typically took an order of magnitude longer to evaporate than isooctane/toluene. The effects of injection time, injection pressure, engine temperature, and combustion on the fuel-film evaporation time were investigated. This film survival time was reduced with higher engine temperature, higher injection pressure, and later injection time, with engine temperature being the most significant parameter, whereas skip-fired combustion had very little effect on the film survival time. In complementary experiments, LIF from fuel films and soot incandescence were simultaneously visualized by an intensified double-frame CCD camera. At lower engine temperatures the fuel films remained distinct, and soot formation was limited to regions above the films, whereas at higher temperatures, fuel films, and hence the soot, appeared to be spread over the whole piston surface. Finally, high-speed imaging showed the spray, chemiluminescence, and soot incandescence, with results broadly consistent with fuel-film LIF and soot incandescence imaging.  相似文献   

5.
A new diode-pumped Nd:YAlO3 laser system emitting pulse bursts at 671 nm has made it possible to apply tracer-laser-induced-fluorescence (LIF) techniques for spray diagnostics not only by using model fuels but in real diesel or gasoline fuel sprays. In this work we characterize possible candidates for LIF tracers that can be excited in the wavelength region of 650–680 nm where commercial diesel fuel is transparent. Two fluorescent dyes, Rhodamine 800 and Atto 680, were identified as possible tracers and tested for their relative fluorescence quantum yield and absorption cross section in a diesel fuel environment as well as their behavior at different temperatures. First results of laser-dropsizing experiments with Rhodamine 800 as a fluorescence tracer are presented. PACS 42.62.Fi; 32.50.+d; 42.62.Cf  相似文献   

6.
Laser measurement techniques are widely used in automotive development processes. Applications at Volkswagen are presented where laser metrology works as a diagnostic tool for analysing and optimising complex coupled processes inside and between automotive components and structures such as the reduction of a vehicle's interior or outer acoustic noise, including brake noise, and the combustion analysis for diesel and gasoline engines to further reduce fuel consumption and pollution. Pulsed electronic speckle pattern interferometry (ESPI) and holographic interferometry are used for analysing the knocking behaviour of modern engines and for correct positioning of knocking sensors. Holographic interferometry shows up the vibrational behaviour of brake components and their interaction during braking, and allows optimisation for noise-free brake systems. Scanning laser vibrometry analyses structure-born noise of a whole car body for the optimisation of its interior acoustical behaviour.Modern engine combustion concepts such as in direct-injection (DI) gasoline and diesel engines benefit from laser diagnostic tools which permit deeper insight into the in-cylinder processes such as flow generation, fuel injection and spray formation, atomisation and mixing, ignition and combustion, and formation and reduction of pollutants. The necessary optical access inside a cylinder is realised by so-called ‘transparent engines’ allowing measurements nearly during the whole engine cycle. Measurement techniques and results on double-pulse particle image velocimetry (PIV) with a frequency-doubled YAG laser for in-cylinder flow analysis are presented, as well as Mie-scattering on droplets using a copper vapour laser combined with high-speed filming, and laser-induced fluorescence (LIF) with an excimer laser for spray and fuel vapour analysis.  相似文献   

7.
A single-laser single-camera imaging technique was demonstrated for in-cylinder temperature distribution measurements in a direct-injection internal combustion engine. The single excitation wavelength two-color detection technique is based on toluene laser-induced fluorescence (LIF). Toluene-LIF emission spectra show a red-shift with increasing temperature. Temperature can thus be determined from the ratio of the signal measured in two separate wavelength ranges independent of the local tracer concentration, laser pulse energy, and the intensity distribution. An image doubling and filtering system is used for the simultaneous imaging of two wavelength ranges of toluene LIF onto the chip of a single camera upon excitation at 248 nm. The measurements were performed in a spark-ignition engine with homogeneous charge and yielded temperature images with a single-shot precision of approximately ±?6%.  相似文献   

8.
The spatial and temporal locations of autoignition for direct-injection compression-ignition engines depend on fuel chemistry, temperature, pressure, and mixing trajectories in the fuel jets. Dual-fuel systems can provide insight into both fuel-chemistry and physical effects by varying fuel reactivities and engine operating conditions. In this context, the spatial and temporal progression of two-stage autoignition of a diesel-fuel surrogate, n-heptane, in a lean-premixed charge of synthetic natural-gas (NG) and air is imaged in an optically accessible heavy-duty diesel engine. The lean-premixed charge of NG is prepared by fumigation upstream of the engine intake manifold. Optical diagnostics include high-speed (15kfps) cool-flame chemiluminescence-imaging as an indicator of low-temperature heat-release (LTHR) and OH* chemiluminescence-imaging as an indicator high-temperature heat-release (HTHR). NG prolongs the ignition delay of the pilot fuel and increases the combustion duration. Zero-dimensional chemical-kinetics simulations provide further understanding by replicating a Lagrangian perspective for mixtures evolving along streamlines originating either at the fuel nozzle or in the ambient gas, for which the pilot-fuel concentration is either decreasing or increasing, respectively. The zero-dimensional simulations predict that LTHR initiates most likely on the air streamlines before transitioning to HTHR, either on fuel-streamlines or on air-streamlines in regions of near-constant ?. Due to the relatively short pilot-fuel injection-durations, the transient increase in entrainment near the end of injection (entrainment wave) is important for quickly creating auto-ignitable mixtures. To achieve desired combustion characteristics, e.g., multiple ignition-kernels and favorable combustion phasing and location (e.g., for reducing wall heat-transfer or optimizing charge stratification), adjusting injection parameters could tailor mixing trajectories to offset changes in fuel ignition chemistry.  相似文献   

9.
《Current Applied Physics》2001,1(4-5):363-366
We present the organic electroluminescent devices and lasers of which the colors are tuned by utilizing the Förster excitation energy transfer. Fluorene-based light emitting polymers, poly(2,7-bis(p-stiryl)-9,9-di-n-hexylfluorene sebacate) (PBSDHFS), poly(9,9-di-n-hexyl fluorenediylvinylene-alt-1,4-phenylenevinylene) (PDHFPPV), and a laser dye, 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM) were used as the components of the energy transfer systems. Color-tunable photoluminescence, electroluminescence, and laser emission in the PBSDHFS/PDHFPPV binary and PBSDHFS/PDHFPPV/DCM ternary blends are demonstrated.  相似文献   

10.
Experimental and numerical studies are carried out to construct reliable surrogates that can reproduce aspects of combustion of JP-8 and Jet-A. Surrogate fuels are defined as mixtures of few hydrocarbon compounds with combustion characteristics similar to those of commercial fuels. The combustion characteristics considered here are extinction and autoignition in laminar non premixed flows. The “reference” fuels used as components for the surrogates of jet fuels are n-decane, n-dodecane, methylcyclohexane, toluene, and o-xylene. Three surrogates are constructed by mixing these components in proportions to their chemical types found in jet fuels. Experiments are conducted in the counterflow system. The fuels tested are the components of the surrogates, the surrogates, and the jet fuels. A fuel stream made up of a mixture of fuel vapors and nitrogen is injected into a mixing layer from one duct of a counterflow burner. Air is injected from the other duct into the same mixing layer. The strain rate at extinction is measured as a function of the mass fraction of fuel in the fuel stream. The temperature of the air at autoignition is measured as a function of the strain rate at a fixed value of the mass fraction of fuel in the fuel stream. The measured values of the critical conditions of extinction and autoignition for the surrogates show that they are slightly more reactive than the jet fuels. Numerical calculations are carried out using a semi-detailed chemical-kinetic mechanism. The calculated values of the critical conditions of extinction and autoignition for the reference fuels and for the surrogates are found to agree well with experimental data. Sensitivity analysis is used to highlight key elementary reactions that influence the critical conditions of autoignition of an alkane fuel and an aromatic fuel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号