首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental studies of aerosol combustion under quiescent and turbulence conditions have been conducted to quantify the differences in the flame structure and burning rates between aerosol and gaseous mixtures. Turbulence was generated by variable speed fans to yield rms turbulence velocities between 0.5 and 4.0 m/s and this was uniform and isotropic. Homogeneously distributed and near monodispersed iso-octane-air aerosol clouds were generated using a thermodynamic condensation method. Spherically expanding flames, following central ignition, at near atmospheric pressures were employed to quantify the flame structure and propagation rate. The effects of the diameter of fine fuel droplets on flame propagation were investigated. It is suggested that the inertia of fuel droplets is an important cause of flame enhancement during early flame development. During later stages, cellular flame instability and the effective, gaseous phase, equivalence ratio becomes important. The latter effect leads has increases the flame speed of rich mixtures, but decreases that of lean ones. Droplet enhancement of burning velocity can be significant at low turbulence but is negligible at high turbulence.  相似文献   

2.
An experimental study on lean turbulent premixed methane–air flames at high pressure is conducted by using a turbulent Bunsen flame configuration. A single equivalence ratio flame at Φ = 0.6 is explored for pressures ranging from atmospheric pressure to 0.9 MPa. LDA measurements of the cold flow indicate that turbulence intensities and the integral length scale are not sensitive to pressure. Due to the decreased kinematic viscosity with increasing pressure, the turbulent Reynolds numbers increase, and isotropic turbulence scaling relations indicate a large decrease of the smallest turbulence scales. Available experimental results and PREMIX code computations indicate a decrease in laminar flame propagation velocities with increasing pressure, essentially between the atmospheric pressure and 0.5 MPa. The u′/SL ratio increases therefore accordingly. Instantaneous flame images are obtained by Mie scattering tomography. The images and their analysis show that pressure increase generates small scale flame structures. In an attempt to generalize these results, the variance of the flamelet curvatures, the standard deviation of the flamelet orientation angle, and the flamelet crossing lengths have been plotted against which is proportional to the ratio between the integral and Taylor length scales, and which increases with pressure. These three parameters vary linearly with the ratio between large and small turbulence scales and clearly indicate the strong effect of this parameter on premixed turbulent flame dynamics and structure. An obvious consequence is the increase in flame surface density and hence burning rate with pressure, as confirmed by its direct determination from 2D tomographic images.  相似文献   

3.
A data processing scheme with particular emphasis on proper flame contour smoothing is developed and applied to measure the three-dimensional mean flame surface area ratio in turbulent premixed flames. The scheme is based on the two-sheet imaging technique such that the mean flame surface area ratio is an average within a window covering a finite section of the turbulent flame brush. This is in contrast to the crossed-plane tomograph technique which applies only to a line. Two sets of Bunsen flames have been investigated in this work with the turbulent Reynolds number up to 4000 and the Damköhler number ranging from less than unity to close to 10. The results show that three-dimensional effects are substantial. The measured three-dimensional mean flame surface area ratio correlates well with a formula similar to the Zimont model for turbulent burning velocity but with different model constants. Also, the mean flame surface area ratio displays a weak dependency on turbulence intensity but a strong positive dependency on the turbulence integral length scale.  相似文献   

4.
The zone conditional conservation equations are derived and validated against the DNS data of a freely propagating one-dimensional turbulent premixed flame. Conditional flow velocities are calculated by the conditional continuity and momentum equations, and a modeled transport equation for the Reynolds average reaction progress variable. An asymptotic formula for turbulent burning velocity is obtained with the effects of a finite Damköhler number accounted for as an additional factor. It is shown that flame generated turbulence is primarily due to correlations between fluctuating gas velocities and fluctuating unit normal vector on a flame surface. More investigation is required to validate general predictive capability of the derived conditional conservation equations and the relationships modeled for closure.  相似文献   

5.
The present study aims to clarify the effects of turbulence intensity and coal concentration on the spherical turbulent flame propagation of a pulverized coal particle cloud. A unique experimental apparatus was developed in which coal particles can be dispersed homogeneously in a turbulent flow field generated by two fans. Experiments on spherical turbulent flame propagation of pulverized coal particle clouds in a constant volume spherical chamber in various turbulence intensities and coal concentrations were conducted. A common bituminous coal was used in the present study. The flame propagation velocity was obtained from an analysis of flame propagation images taken using a high-speed camera. It was found that the flame propagation velocity increased with increasing flame radius. The flame propagation velocity increases as the turbulence intensity increases. Similar trends were observed in spherical flames using gaseous fuel. The coal concentration has a weak effect on the flame propagation velocity, which is unique to pulverized coal combustions in a turbulent field. These are the first reports of experimental results for the spherical turbulent flame propagation behavior of pulverized coal particle clouds. The results obtained in the present study are obviously different from those of previous pulverized coal combustion studies and any other results of gaseous fuel combustion research.  相似文献   

6.
Local scalar front structures of OH mole fraction, reaction progress variable, and its three-dimensional gradient have been measured in stagnation-type turbulent premixed flames. The reaction progress variable front is observed to change with increasing turbulence from parallel iso-scalar contours but reduced progress variable gradients, called the lamella-like front, to disrupted non-parallel iso-contours that deviate substantially from those of wrinkled laminar flamelets, called the non-flamelet front. This transition is attributed to the different scales of interaction between the flame internal structure and a spectrum of turbulence extending from the integral scale to the Kolmogorov scale. The lamella-like front pattern occurs when the length scales of interaction are smaller than the laminar flame thickness but the time scales are greater than the flame residence time. The non-flamelet front pattern occurs when the length scales of interaction are greater than the laminar flame thickness but the time scales are smaller than the flame residence time. This difference corresponds to the change of combustion regime from complex-strain flame front to turbulent flame front on a revised regime diagram. A correlation is also proposed for the turbulent flame brush thickness as a function of turbulent Reynolds number and heat release parameter. The heat release parameter is considered to arise from the non-passive effects of flame-surface wrinkling.  相似文献   

7.
Direct numerical simulations (DNS) are ideally suited to investigate in detail turbulent reacting flows in simple geometries. For an increasing number of applications, detailed models must be employed to describe the chemical processes with sufficient accuracy. Despite the huge cost of such simulations, recent progress has allowed the direct numerical simulation of turbulent premixed flames while employing complete reaction schemes. We briefly describe our own developments in this field and use the resulting DNS code to investigate more extensively the structure of premixed methane flames expanding in a three-dimensional turbulent velocity field, initially homogeneous and isotropic. This situation typifies, for example, the initial flame development after spark ignition in a gas turbine or an internal combustion engine. First investigation steps have been carried out at low turbulence levels on this same configuration in the past Symposium, and we build on top of these former results. Here, a considerably higher Reynolds number is considered, the simulation has been repeated twice in to limit the possibility of spurious, very specific results, and several complementary post-processing steps are carried out. Characteristic features concerning the observed combustion regime are presented. We then investigate in a quantitative manner the evolution of flame surface area, global stretch-rate, flame front curvature, flame thickness, and correlation between thickness and curvature. The possibility of obtaining reliable information on flame front curvature from two-dimensional slices is checked by comparison with the exact procedure.  相似文献   

8.
Level-set G-equation and stationary flamelet chemistry are used in large eddy simulation of a propane/air premixed turbulent flame stabilized by a bluff body. The aim was to study the interaction between the flame front and turbulent eddies, and in particular to examine the effect of sub-grid scale (SGS) eddies on the wrinkling of the flame surface. The results indicated that the two types of turbulence eddies—the resolved large scale eddies and the unresolved SGS eddies—have different effects on the flame. The fluctuation of the flame surface, which is responsible for the broadening of the time averaged mean flame brush by turbulence, depends on the large resolved turbulence eddies. Time averaged mean flow velocity, temperature, and major species concentrations mainly depend on the large scale resolved eddies. The unresolved SGS eddies contribute to the wrinkling at the SGS level and play an important role in the enhancement of the propagation speed of the resolved flame front. In addition, the spatially filtered intermediate species, such as radicals, and the spatially filtered reaction rates strongly depend on the small SGS eddies. The asymptotic behavior of flame wrinkling by the SGS eddies, with respect to the decrease in filter size and grid size, is investigated further using a simplified level-set equation in a model shear flow. It is shown that to minimize the influence of the SGS eddies, fine grid and filter size may have to be used.  相似文献   

9.
A theoretical study of premixed turbulent flame development   总被引:1,自引:0,他引:1  
Flame development in a statistically stationary and uniform, planar, one-dimensional turbulent flow is theoretically studied. A generalized balance equation for the mean combustion progress variable, which includes turbulent diffusion and pressure-driven transport terms, as well as the mean rate of product creation, is introduced and analyzed by invoking the sole assumption of a self-similar flame structure, well-supported by numerous experiments. The assumption offers the opportunity to simplify the problem by splitting the aforementioned partial differential equation into two ordinary differential equations, which separately model spatial variations of the progress variable and time variations of flame speed and thickness. The self-similar profile of the progress variable, obtained in numerous experiments, is theoretically predicted. Closures of the normalized pressure-driven transport term and mean rate of product creation are obtained. The closed balance equation shows that turbulent diffusion dominates during the initial stage of flame development, followed by the transition to counter-gradient transport in a sufficiently developed flame. A criterion of the transition is derived. The transition is promoted by the heat release and pressure-driven transport. Fully developed mean flame brush thickness and speed are shown to decrease when either density ratio or pressure-driven transport increases. Solutions for the development of the thickness are obtained. The development is accelerated by the pressure-driven transport and heat release.  相似文献   

10.
Combustion under stratified conditions is common in many systems. However, relatively little is known about the structure and dynamics of turbulent stratified flames. Two-dimensional imaging diagnostics are applied to premixed and stratified V-flames at a mean equivalence ratio of 0.77, and low turbulent intensity, within the corrugated flame range. The present results show that stratification affects the mean turbulent flame speed, structure and geometric properties. Stratification increases the flame surface density above the premixed flame levels in all cases, with a maximum reached at intermediate levels of stratification. The flame surface density (FSD) of stratified flames is higher than that of premixed flames at the same mean equivalence ratio. Under the present conditions, the FSD peaks at a stratification ratio around 3.0. The FSD curves for stratified flames are further skewed towards the product side. The distribution of flame curvature in stratified flames is broader and more symmetric relative to premixed flames, indicating an additional mechanism of curvature generation, which is not necessarily due to cusping. These experiments indicate that flame stratification affects the intrinsic behaviour of turbulent flames and suggest that models may need to be revised in the light of the current evidence.  相似文献   

11.
Dynamic features of a freely propagating turbulent premixed flame under global stretch rate oscillations were investigated by utilizing a jet-type low-swirl burner equipped with a high-speed valve on the swirl jet line. The bulk flow velocity, equivalence ratio and the nominal mean swirl number were 5 m/s, 0.80 and 1.23, respectively. Seven velocity forcing amplitudes, from 0.09 to 0.55, were examined with a single forcing frequency of 50 Hz. Three kinds of optical measurements, OH-PLIF, OH* chemiluminescence and PIV, were conducted. All the data were measured or post-processed in a phase-locked manner to obtain phase-resolved information. The global transverse stretch rate showed in-phase oscillations centering around 60 (1/s). The oscillation amplitude of the stretch rate grew with the increment of the forcing amplitude. The turbulent flame structure in the core flow region varied largely in axial direction in response to the flowfield oscillations. The flame brush thickness and the flame surface area oscillated with a phase shift to the stretch rate oscillations. These two properties showed a maximum and minimum values in the increasing and decreasing stretch periods, respectively, for all the forcing amplitudes. Despite large variations in flame brush thickness at different phase angles, the normalized profiles collapse onto a consistent curve. This suggests that the self-similarity sustains in this dynamic flame. The global OH* fluctuation response (i.e. response of global heat-release rate fluctuation) showed a linear dependency to the forcing velocity oscillation amplitudes. The flame surface area fluctuation response showed a linear tendency as well with a slope similar to that of the global OH* fluctuation. This indicated that the flame surface area variations play a critical role in the global flame response.  相似文献   

12.
Simultaneous line measurements of major species and temperature by the Raman–Rayleigh technique, combined with CO two-photon laser-induced fluorescence and crossed-plane OH planar laser-induced fluorescence have been applied to a series of flames in the Piloted Premixed Jet Burner (PPJB). The PPJB is capable of stabilizing highly turbulent premixed jet flames through the use of a stoichiometric pilot and a large coflow of hot combustion products. Four flames with increasing jet velocities and constant jet equivalence ratios are examined in this paper. The characteristics of these four flames range from stable flame brushes with reaction zones that can be described as thin and “flamelet-like” to flames that have thickened reaction zones and exhibit extinction re-ignition behaviour. Radial profiles of the mean temperature are reported, indicating the mean thermal extent of the pilot and spatial location of the mean flame brush. Measurements of carbon monoxide (CO) and the hydroxyl radical (OH) reveal a gradual decrease in the conditional mean as the jet velocity is increased and the flame approaches extinction. Experimental results for the conditional mean temperature gradient show a progressive trend of reaction zone thickening with increasing jet velocities, indicating the increased interaction of turbulence with the reaction zone at higher turbulence levels. For the compositions examined, the product of CO and OH mole fractions ([CO][OH]) is shown to be a good qualitative indicator for the net rate of production of carbon dioxide. The axial variation of [CO][OH] is shown to correlate well with the mean chemi-luminescence of the flames including the extinction re-ignition regions. The experimental findings reported in this paper further support the hypothesis of an initial ignition region followed by extinction and re-ignition regions for certain PPJB flames.  相似文献   

13.
In the present study, a new turbulent premixed combustion model is proposed by integrating the Coherent Flame Model with the modified eddy dissipation concept, and relating the fine structure mass fraction to the flame surface density. First, experimental results of turbulent flame speed available from literature are compared with the predicted results at different turbulence intensities to validate the flame surface density model. It is observed that the model is able to predict the turbulent burning speeds accurately. Then, a comprehensive validation is carried out utilizing data on a turbulent lifted methane flame issuing into a vitiated co-flow. Detailed comparison of temperature and species concentrations between experiment and simulation is performed at different heights of the flame. Overall, the model is found to predict both the spatial variation and peak values of the scalars at various heights satisfactorily.  相似文献   

14.

The partial quenching structure of turbulent diffusion flames in a turbulent mixing layer is investigated by the method of flame hole dynamics as an effort to develop a prediction model for the turbulent flame lift off. The essence of the flame hole dynamics is derivation of the random walk mapping, from the flame-edge theory, which governs expansion or contraction of the quenching holes initially created by the local quenching events. The numerical simulation for the flame hole dynamics is carried out in two stages. First, a direct numerical simulation is performed for a constant-density fuel–air channel mixing layer to obtain the background turbulent flow and mixing fields, from which a time series of two-dimensional scalar-dissipation-rate array is extracted. Subsequently, a Lagrangian simulation of the flame hole random walk mapping, projected to the scalar dissipation rate array, yields a temporally evolving turbulent extinction process and its statistics on partial quenching characteristics. In particular, the probability of encountering the reacting state, while conditioned with the instantaneous scalar dissipation rate, is examined to reveal that the conditional probability has a sharp transition across the crossover scalar dissipation rate, at which the flame edge changes its direction of propagation. This statistical characteristic implies that the flame edge propagation instead of the local quenching event is the main mechanism controlling the partial quenching events in turbulent flames. In addition, the conditional probability can be approximated by a heavyside function across the crossover scalar dissipation rate.  相似文献   

15.
Tabulated chemistry and presumed probability density function (PDF) approaches are combined to perform RANS modeling of premixed turbulent combustion. The chemistry is tabulated from premixed flamelets with three independent parameters: the equivalence ratio of the mixture, the progress of reaction, and the specific enthalpy, to account for heat losses at walls. Mean quantities are estimated from presumed PDFs. This approach is used to numerically predict a turbulent premixed flame diluted by hot burnt products at an equivalence ratio that differs from the main stream of reactants. The investigated flame, subjected to high velocity fluctuations, has a thickened-wrinkled structure. A recently proposed closure for scalar dissipation rate that includes an estimation of the coupling between flame wrinkling and micromixing is retained. Comparisons of simulations with experimental measurements of mean velocity, temperature, and reactants are performed.  相似文献   

16.
Recent numerical and experimental studies have unveiled a potentially marked difference between the laminar as well as turbulent propagation of premixed flames exhibiting Darrieus–Landau (DL) (or hydrodynamic) instabilities from flames for which instabilities are inhibited. In this study we utilize two-dimensional numerical simulations of slot burner flames as well as experimental Propane–Air Bunsen flames to analyse differences in turbulent propagation, strain rate and induced flow patterns of hydrodynamically stable and unstable flames. We also investigate the effects of hydrodynamic instability on quantities which are directly related to reaction rate closure models, such as flame surface density and stretch factor. A clear enhancement of turbulent flame speed can be observed for unstable flames, generally mitigated at higher turbulence intensity, which is attributed to a flame area increase induced by the characteristic cusp-like DL-induced corrugation, absent in stable flames, which occurs concurrently and in synergy with turbulent wrinkling. Unstable flames also exhibit, both numerically and experimentally, a different correlation between strain rate and flame curvature and are observed to give rise to a channeling of the induced flow in the fresh mixture. Conditionally averaged flame surface density is also observed to attain smaller values in unstable flames, as a result of the thicker turbulent flame brush, indicating that closure models should incorporate instability-related parameters in addition to turbulence-related parameters.  相似文献   

17.
High-repetition rate laser Rayleigh scattering is used to study the temperature fluctuations, power spectra, gradients, and thermal dissipation rate characteristics of a non-premixed turbulent jet flame at a Reynolds number of 15,200. The radial temperature gradient is measured by a two-point technique, whereas the axial gradient is measured from the temperature time-series combined with Taylor’s hypothesis. The temperature power spectra along the jet centerline exhibit only a small inertial subrange, probably because of the low local Reynolds number (Reδ ≈ 2000), although a larger inertial subrange is present in the spectra at off-centerline locations. Scaling the frequency by the estimated Batchelor frequency improves the collapse of the dissipation region of the spectra, but this collapse is not as good as is obtained in non-reacting jets. Probability density functions of the thermal dissipation are shown to deviate from lognormal in the low-dissipation portion of the distribution when only one component of the gradient is used. In contrast, nearly log-normal distributions are obtained along the centerline when both axial and radial components are included, even for locations where the axial gradient is not resolved. The thermal dissipation PDFs measured off the centerline deviate from log-normal owing to large-scale intermittency. At one-half the visible flame length, the radial profile of the mean thermal dissipation exhibits a peak off the centerline, whereas farther downstream the peak dissipation occurs on the centerline. The mean thermal dissipation on centerline is observed to increase linearly with downstream distance, reach a peak at the location of maximum mean centerline temperature, and then decrease for farther downstream locations. Many of these observed trends are not consistent with equivalent non-reacting turbulent jet measurements, and thus indicate the importance of understanding how heat release modifies the turbulence structure of jet flames.  相似文献   

18.
This study investigates the influence of large-scale flow features, including flow structure and velocity magnitude, on the early-burn period variability in a homogenous-charge spark-ignited engine fueled with premixed propane-air mixture. Particle image velocimetry and in-cylinder pressure measurement data from a previous study - were processed to enable simultaneous flow characterization and flame-front tracking as well as apparent heat-release analysis. By combining probability analysis of flame development with conditional sampling of fast and slow early-burn cycles using 10% fuel mass fraction burned, it is shown that an undesirable flow structure produces an asymmetric flame development at the initial flame growth period. This asymmetric flame structure persists through the whole initial-to-turbulent transition period until the flame becomes fully turbulent. The undesirable flow condition is characterized by large-scale convective flows near spark plug rather than flows that lead to increased flame spread in multiple directions. The simultaneous flow and flame characterization enables the quantifications of flame-front propagation speed, unburned fuel-air mixture velocity ahead of flame front and local burning velocity at flame surface. Here the local burning velocity is referred to as laminar or turbulent flame speed. A simplified approach is introduced to derive integrated values for these quantities per crank-angle-degree, enabling the quantitative comparison of the trend-wise difference in these integrated metrics between fast and slow early-burn cycles. It is revealed that for the transition period, the CCV in the velocity magnitude of unburned fuel-air mixture ahead of the flame front accounts for nearly 50% to the variability of flame propagation speed. The burning velocity provides the remaining source of the flame propagation variability in this period. The flame propagation variations in the initial flame growth and fully turbulent periods are smaller than those in the transition period and are primarily dependent on the variability of large-scale flow features.  相似文献   

19.
A turbulent piloted jet flame subject to a rapid velocity pulse in its fuel jet inflow is proposed as a new benchmark case for the study of turbulent combustion models. In this work, we perform modelling studies of this turbulent pulsed jet flame and focus on the predictions of its flow and turbulence fields. An advanced modelling strategy combining the large eddy simulation (LES) and the probability density function (PDF) methods is employed to model the turbulent pulsed jet flame. Characteristics of the velocity measurements are analysed to produce a time-dependent inflow condition that can be fed into the simulations. The effect of the uncertainty in the inflow turbulence intensity is investigated and is found to be very small. A method of specifying the inflow turbulence boundary condition for the simulations of the pulsed jet flame is assessed. The strategies for validating LES of statistically transient flames are discussed, and a new framework is developed consisting of different averaging strategies and a bootstrap method for constructing confidence intervals. Parametric studies are performed to examine the sensitivity of the predictions of the flow and turbulence fields to model and numerical parameters. A direct comparison of the predicted and measured time series of the axial velocity demonstrates a satisfactory prediction of the flow and turbulence fields of the pulsed jet flame by the employed modelling methods.  相似文献   

20.
The turbulent deflagration to detonation transition (DDT) process occurs when a subsonic flame interacts with intense turbulence resulting in spontaneous acceleration and the onset of DDT. The mechanisms that govern the spontaneous ignition are deduced intricately in numerical simulations. This work experimentally explores the conditions that are known precursors to detonation initiation. More specifically, the experiment presented investigates the role of flame-generated compression as a cycle that continuously amplifies until a hotspot forms on the flame front and ignites. The study quantifies the compression comparatively against other flame regimes through ultra-high speed pressure measurements while qualitatively detailing flame generated compression through density gradients via schlieren imaging. Additionally, flow field measurements are quantified throughout the flow using simultaneous particle image velocimetry (PIV) and OH* chemiluminescence. The turbulence fluctuations and flame speeds are extracted from these measurements to identify the reactant conditions where flame-generated compression begins. Collectively, these simultaneous high-speed measurements provide detailed insight into the flame and flow field characteristics where the runaway process occurs. This work ultimately documents direct flow field measurements to extract the contribution of flame-generated turbulence on the turbulent deflagration to detonation transition process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号