首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The equations of the turbulent boundary layer contain a small parameter — the reciprocal of the Reynolds number, which makes it possible to carry out an asymptotic analysis of the solutions with respect to that small parameter. Such analyses have been the subject of a number of studies [1–5]. In [2, 5] for closing the momentum equation algebraic Prandtl and turbulent viscosity models were used. In [1, 3, 4] the structure of the boundary layer was analyzed in general form without formulating specific closing hypothesis but under additional assumptions concerning the nature of the asymptotic behavior of the limiting solutions in the various regions.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.4, pp. 106–117, May-June, 1993.  相似文献   

2.
Measurements of the positional variation of surface-attaching probabilities for 6.77μ uncharged monodisperse uranine aerosol particles on a stainless steel plate are presented for a turbulent flat plate boundary layer. The results presented include results for conditions in which the attaching probability is unity and less than unity. It was found that the variation of the attaching probability was invariant with position once the boundary layer became fully turbulent.  相似文献   

3.
An efficient hybrid uncorrelated wall plane waves–boundary element method (UWPW-BEM) technique is proposed to predict the flow-induced noise from a structure in low Mach number turbulent flow. Reynolds-averaged Navier-Stokes equations are used to estimate the turbulent boundary layer parameters such as convective velocity, boundary layer thickness, and wall shear stress over the surface of the structure. The spectrum of the wall pressure fluctuations is evaluated from the turbulent boundary layer parameters and by using semi-empirical models from literature. The wall pressure field underneath the turbulent boundary layer is synthesized by realizations of uncorrelated wall plane waves (UWPW). An acoustic BEM solver is then employed to compute the acoustic pressure scattered by the structure from the synthesized wall pressure field. Finally, the acoustic response of the structure in turbulent flow is obtained as an ensemble average of the acoustic pressures due to all realizations of uncorrelated plane waves. To demonstrate the hybrid UWPW-BEM approach, the self-noise generated by a flat plate in turbulent flow with Reynolds number based on chord Rec = 4.9 × 105 is predicted. The results are compared with those obtained from a large eddy simulation (LES)-BEM technique as well as with experimental data from literature.  相似文献   

4.
Coherent structures and the bursting phenomena in the wall region of a turbulent boundary layer play a very important role in determining the characteristics of the boundary layer. Yet the nature and the origin of the coherent structures are unclear until now. In this paper, nonlinear stability calculations for the wall region of a turbulent boundary layer have been made. It was found that there do exist instability waves which may be responsible for the coherent structures. The project is supported by the National Natural Science Foundation of China.  相似文献   

5.
6.
In this paper we present the results of calculations of the space correlations of the random pressure field which acts on the surface of a flat plate out of a fully developed turbulent boundary layer. Calculations are performed on the basis of available experimental data on the cross-spectral density of the turbulent pressure fluctuations. It is found that the spacetime correlations have an explicitly expressed form similarity. This is used as a basis for deriving a simple approximate relation between the modulus of the normalized cross-spectral density, the energy spectrum, and the maxima of the space-time correlation coefficient. The results of elementary calculations performed on the basis of the obtained relation are shown to be almost identical with those obtained on a digital computer from exact formulas.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 10, No. 3, pp. 116–120, May–June, 1969.The author is indebted to Yu. G. Blyudze for useful discussions of the results of this paper.  相似文献   

7.
Results are presented of an experimental study of heat transfer with stepwise heat addition on a flat wall. The experimental temperature profiles and heat transfer data obtained confirm the previously suggested hypothesis that the conventional heat-transfer law is valid in this case if the calculation is based on the difference of the equilibrium and actual wall temperatures.The author wishes to thank A. L. Leont'ev, É. P. Volchkov, and E. G. Zaulichnii for guidance and assistance in this study.  相似文献   

8.
 The effect of transverse square grooves on the drag characteristics of a flat plate has been investigated using direct drag measurements in a tow tank. Two flat plates with 2.5 and 5 mm transverse square grooves, with groove spacing (s) to groove width (w) ratio, s/w=10, 20 and 40, were tested at plate length Reynolds numbers in the range 2–10×106. There is an increase in drag over the “smooth” plate for all s/w configurations. Received: 31 December 1997/Accepted: 4 April 1998  相似文献   

9.
An experimental study on heat transfer enhancement for a turbulent natural convection boundary layer in air along a vertical flat plate has been performed by inserting a long flat plate in the spanwise direction (simple heat transfer promoter) and short flat plates aligned in the spanwise direction (split heat transfer promoter) with clearances into the near-wall region of the boundary layer. For a simple heat transfer promoter, the heat transfer coefficients increase by a peak value of approximately 37% in the downstream region of the promoter compared with those in the usual turbulent natural convection boundary layer. It is found from flow visualization and simultaneous measurements of the flow and thermal fields with hot- and cold-wires that such increase of heat transfer coefficients is mainly caused by the deflection of flows toward the outer region of the boundary layer and the invasion of low-temperature fluids from the outer region to the near-wall region with large-scale vortex motions riding out the promoter. However, heat transfer coefficients for a split heat transfer promoter exhibit an increase in peak value of approximately 60% in the downstream region of the promoter. Flow visualization and PIV measurements show that such remarkable heat transfer enhancement is attributed to longitudinal vortices generated by flows passing through the clearances of the promoter in addition to large-scale vortex motions riding out the promoter. Consequently, it is concluded that heat transfer enhancement of the turbulent natural convection boundary layer can be substantially achieved in a wide area of the turbulent natural convection boundary layer by employing multiple column split heat transfer promoters. It may be expected that the heat transfer enhancement in excess of approximately 40% can be accomplished by inserting such promoters.  相似文献   

10.
O. B. Larin 《Fluid Dynamics》1979,14(6):838-844
The ignition of hydrogen blown into a turbulent supersonic boundary layer on a flat plate is investigated numerically. It is assumed that the mixture consists of six chemically active components H, O, OH, H2O, O2, H2 and inert nitrogen N2. The boundary layer is divided into outer and inner regions, for which different expressions for the coefficients of turbulent transport are used. The influence of pulsations on the rates of the chemical reactions, and also the back reaction of the chemical processes on the mechanism of turbulent transfer are not taken into account. The surface of the plate is assumed to be absolutely catalytic with respect to the recombination reactions of the H and O atoms. The influence of the blowing intensity, the Mach number in the outer flow, and the pressure on the ignition delay is analyzed. The possibility of effective porous cooling of the surface when there is combustion in the boundary layer is demonstrated.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 33–40, November–December, 1979.I thank V. G. Gromov and V. A. Levin for their interest in the work.  相似文献   

11.
The Kármán-Polhausen integral method is used to investigate the problem of an unsteady-state thermal boundary layer on an isothermal plate with a stepwise change in the conditions of flow around the plate; analytical expressions are obtained for the thickness of the thermal boundary layer. A dependence is found for the rate of movement of the boundary between the steady-state and unsteady-state regions of the solution on the Prandtl number. A similar problem was solved in [1, 2] for a dynamic layer, Goodman [3] discusses the more partial problem of an unsteady-state thermal boundary layer under steady-state flow conditions. Rozenshtok [4] considers the problem in an adequate statement but, unfortunately, he permitted errors of principle to enter into the writing of the system of characteristic equations; this led to absolutely invalid results. In an evaluation of the advantages and shortcomings of the integral method under consideration, given in [4], it must only be added that the method is applicable to problems in which the initial conditions differ from zero since, in this case, approximation of the velocity and temperature profiles by polynomials is not admissible.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 64–69, July–August, 1970.  相似文献   

12.
The boundary layer motion of a weak suspension is investigated with allowance for the effect on the particles not only of the Stokes force but also of the additional transverse force resulting from the transverse nonuniformity of the flow over the individual particle. As distinct from studies [1–3], in which the limiting values of the transverse force (Saffman force) were used [4], the velocity and density of the dispersed phase have been determined with allowance for the dependence of the Saffman force on the ratio of the Reynolds numbers calculated from the velocity of the flow over the individual particle and the transverse velocity gradient of the undisturbed flow, respectively [5, 6].Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 66–73, January–February, 1992.In conclusion the authors wishes to thank M. N. Kogan, N. K. Makashev, and A. Yu. Boris for useful discussions of the results.  相似文献   

13.
《Comptes Rendus Mecanique》2014,342(6-7):417-424
We use POD and EPOD (extended POD) analysis to extract the main features of the flow over a thick flat plate simulated with an LES. Our goal is to better understand the coupling between the velocity field and the surface pressure field. We find that POD modes based on the full velocity and energy fields contain both flapping and shedding frequencies. Pressure modes are found to be uniform in the spanwise direction and the most intense variations take place at the mean reattachment point. Velocity modes educed from the pressure modes with EPOD are seen to correspond to eddies shed by the recirculation bubble.  相似文献   

14.
15.
16.
17.
This paper reports results of our experimental investigation on flow instability on a flat plate laminar boundary layer caused by a captive vortex migrating far outside the boundary layer. Results show that the sign of the circulation associated with the vortex is the main determinant for the severity of the boundary layer instability. A captive vortex with an opposite sign to that of the unperturbed shear layer vorticity causes a breakdown ahead of it, while the one with the same sign as the unperturbed shear layer vorticity gives rise to weaker excitation trailing it. Additional parameters that influence the flow instability are the strength and distance of the vortical disturbance from the boundary layer, as well as the translational speed of the vortex. These experimental results compliment the corresponding theoretical analysis of Sengupta et al. (J Fluid Mech 493:277–286, 2003).  相似文献   

18.
Resonant interaction phenomena of Tollmien-Schlichting waves (T.-S. waves) are examined experimentally by spectral analysis method. Results demonstrate that, in the spectra measured in the vicinity of the critical layer of the unstable boundary layer, the energy of T.-S. waves concentrates in a narrow band of frequency with one to three peaks in the power spectra corresponding to the eigenfrequencies of T.-S. waves and the frequency with maximum growth rate located between the upper and lower branches of the neutral curve. The resonant interactions transfer the energy of these eigencomponents to their subsequent subharmonics in a range ofR δ* where their growth rates increase from zero to a maximum value, and the boundary layer becomes turbulent after the third resonant interaction.  相似文献   

19.
A study is made of the stationary flow over a semi-infinite flat plate of a two-phase medium consisting of solid particles and a gas, which has a low viscosity. The aim of the paper is to investigate the influence of a difference between the velocities of the phases on the structure of the flow in the boundary layer.Translated from Izvestiya Akademil Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 43–54, July–August, 1980.I thank V. P. Stulov for interest in the work and helpful recommendations.  相似文献   

20.
Glow discharge is introduced as an artificial disturbance to investigate the evolution of first-and second-mode instabilities in a hypersonic flat plate boundary layer.Experiments are conducted in a Mach 6.5 quiet wind tunnel using Rayleigh scattering visualization and particle image velocimetry(PIV). Detailed analysis of the experimental observations is provided. It is found that the artificially introduced 17 kHz disturbance,which belongs to the first-mode frequency band, can effectively enhance first-mode waves.Moreover, it can enhance second-mode waves even more intensely. Possible mechanisms to explain this phenomenon are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号