首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 684 毫秒
1.
In some investigations on variational principle for coupled thermoelastic problems, the free energy Φ(eij,θ) ,where the state variables are elastic strain eij and temperature increment θ, is expressed as Φ(eij,θ)=λ/2ekkeij=uek1ek1-γekkθ-c/2 p θ2/T0(0.1) This expression is employed only under the condition of |θ|≤T0(absolute temperature of reference) But the value of temperature increment is great, even greater than T0 in thermal shock. And the material properties (λ ,μ ,ν ,c , etc.) will not remain constant, they vary with θ. The expression of free energy for this condition.is derived in this paper. Equation (0.1) is its special case.Euler’s equations will be nonlinear while this expression of free energy has been introduced into variational theorem. In order to linearise, the time interval of thermal shock is divided into a number of time elements Δtk, (Δtk=tk-tk-1,k=1,2…,n), which are so small that the temperature increment θk within it is very small, too. Thus, the material properties may be defined by temperature field Tk-1=T(x1,x2,x3,tk-1) at instant tk-1 , and the free energy Φk expressed by eg. (0.1) may be employed in element Δtk.Hence the variational theorem will be expressed partly and approximately.  相似文献   

2.
The aim of this paper is to provide sufficient conditions for the existence of periodic solutions emerging from an upright position of small oscillations of a sleeping symmetrical gyrostat with equations of motion being α and β parameters satisfying Δ=α 2?4β>0 and $\beta-\frac{\alpha^{2}}{2}\pm \frac{\alpha \sqrt{\varDelta }}{2}<0$ , ε a small parameter and, F 1 and F 2 smooth periodic maps in the variable t in resonance p:q with some of the periodic solutions of the system for ε=0, where p and q are positive integers relatively prime. The main tool used is the averaging theory.  相似文献   

3.
We study the existence of bubbling solutions for the the following Chern–Simons–Higgs equation: $$\Delta u +\frac1{\varepsilon^2} {\rm e}^u(1-{\rm e}^u) = 4\pi \sum_{i=1}^{2k}\delta_{p_i},\quad \text{in}\,\Omega,$$ where Ω is a torus. If k = 1, for any critical point q of the associated sum of the Green functions, we introduce a quantity D(q) (see (1.11) below). We show that for any non-degenerate critical point q with D(q) < 0, the above problem has a solution u ε satisfying that ε → 0, u ε blows up at q. The calculations in this paper also show that, if a sequence of solutions u ε blows up at q as ε → 0, then q must be a critical point of the associated sum of the Green functions, and ${D(q) \leqq 0}$ . So, the condition D(q) < 0 is almost necessary to obtain our result. We also construct solutions with k bubbles for ${k \geqq 2}$ .  相似文献   

4.
Deductive similarity analysis is employed to study one-dimensional wave propagation in rate dependent materials whose constitutive laws are special cases of Maxwellian materials (σt = φ(ε, σ)εt + ψ(ε, σ), ε = strain, σ = stress). The general problem is shown not to have a similar solution although many special cases have the independent similar variable (x ? c)/(t ? d)e. These cases are studied and tabulated. Analytic similar solutions are presented for several cases and a discussion of permissable boundary conditions is given.  相似文献   

5.
We prove the existence of a global semigroup for conservative solutions of the nonlinear variational wave equation u tt c(u)(c(u)u x ) x  = 0. We allow for initial data u| t = 0 and u t | t=0 that contain measures. We assume that 0 < k-1 \leqq c(u) \leqq k{0 < \kappa^{-1} \leqq c(u) \leqq \kappa}. Solutions of this equation may experience concentration of the energy density (ut2+c(u)2ux2)dx{(u_t^2+c(u)^2u_x^2){\rm d}x} into sets of measure zero. The solution is constructed by introducing new variables related to the characteristics, whereby singularities in the energy density become manageable. Furthermore, we prove that the energy may focus only on a set of times of zero measure or at points where c′(u) vanishes. A new numerical method for constructing conservative solutions is provided and illustrated with examples.  相似文献   

6.
Fix a strictly increasing right continuous with left limits function ${W: \mathbb{R} \to \mathbb{R}}Fix a strictly increasing right continuous with left limits function W: \mathbbR ? \mathbbR{W: \mathbb{R} \to \mathbb{R}} and a smooth function F: [l,r] ? \mathbb R{\Phi : [l,r] \to \mathbb R}, defined on some interval [l, r] of \mathbb R{\mathbb R}, such that 0 < b\leqq F¢\leqq b-1{0 < b\leqq \Phi'\leqq b^{-1}}. On the diffusive time scale, the evolution of the empirical density of exclusion processes with conductances given by W is described by the unique weak solution of the non-linear differential equation ?t r = (d/dx)(d/dW) F(r){\partial_t \rho = ({\rm d}/{\rm d}x)({\rm d}/{\rm d}W) \Phi(\rho)}. We also present some properties of the operator (d/dx)(d/dW).  相似文献   

7.
We consider the singularly perturbed system $\dot x$ =εf(x,y,ε,λ), $\dot y$ =g(x,y,ε,λ). We assume that for small (ε,λ), (0,0) is a hyperbolic equilibrium on the normally hyperbolic centre manifold y=0 and that y 0(t) is a homoclinic solution of $\dot y$ =g(0,y,0,0). Under an additional condition, we show that there is a curve in the (ε,λ) parameter space on which the perturbed system has a homoclinic orbit also. We investigate the transversality properties of this orbit and use our results to give examples of 4 dimensional systems with Sil'nikov saddle-focus homoclinic orbits.  相似文献   

8.
Direct numerical simulations (DNSs) of spatially developing turbulent boundary layers (TBLs) over sparsely-spaced two-dimensional (2D) rod-roughened walls were performed. The rod elements were periodically arranged along the streamwise direction with pitches of px/k = 8, 16, 32, 64 and 128, where px is the streamwise spacing of the rods, and k is the roughness height. The Reynolds number based on the momentum thickness was varied from Reθ = 300–1400, and the height of the roughness element was k = 1.5θin, where θin is the momentum thickness at the inlet. The characteristics of the TBLs, such as the friction velocity, mean velocity, and Reynolds stresses over the rod-roughened walls, were examined by varying the spacing of the roughness features (8  px/k  128). The outer-layer similarity between the rough and smooth walls was established for the sparsely-distributed rough walls (px/k  32) based on the profiles of the Reynolds stresses, whereas those are not for px/k = 8 and 16. Inspection of the interaction between outer-layer large-scale motions and near-wall small-scale motions using two-point amplitude modulation (AM) covariance showed that modulation effect of large-scale motions on near-wall small-scale motions was strongly disturbed over the rough wall for px/k = 8 and 16. For px/k  32, the flow that passed through the upstream roughness element transitioned to a smooth wall flow between the consecutive rods. The strong influence of the surface roughness in the outer layer for px/k = 8 and 16 was attributed to large-scale erupting motions by the surface roughness, creating both upward shift of the near-wall turbulent energy and active energy production in the outer layer with little influence on the near-wall region.  相似文献   

9.
This article establishes an approximation in the implicit form (within the limits of error) of solutions of [L + M(ε)]x = ρ(t, x) satisfying the limiting conditions x(2k)(0) = x(2k+1)(τ) = 0, k = 0,1,…, n?1, L being a linear differential operator of degree equal to 2n with constant coefficients and M(ε) a differential operator of an inferior order enabling the absorption terms and the coefficients to vary slowly. f(t,x) is continuous in the sense of Lipschitz, not negative, monotonous, increasing in x and of the saturation type.  相似文献   

10.
We prove a principle of linearized stability for semiflows generated by neutral functional differential equations of the form x′(t) = g(? x t , x t ). The state space is a closed subset in a manifold of C 2-functions. Applications include equations with state-dependent delay, as for example x′(t) = a x′(t + d(x(t))) + f (x(t + r(x(t)))) with \({a\in\mathbb{R}, d:\mathbb{R}\to(-h,0), f:\mathbb{R}\to\mathbb{R}, r:\mathbb{R}\to[-h,0]}\).  相似文献   

11.
Initiation of failure by yielding and/or fracture depends on the magnitude of the distortion and dilatation of material elements. According to the strain energy density theory (SED), failure is assumed to initiate at the site of the local maximum of maxima [(dW/dV)maxmax]L by yielding and the maximum of minima [(dW/dV)maxmin]L by fracture. The fracture is assumed to start from point L where [(dW/dV)maxmin]L appears and tends toward G where the global maximum of dW/dV minima appears, denoted by [(dW/dV)maxmin]G. The distance l between L and G along the anticipated crack trajectory is an indication of failure instability of the system by fracture. If l is sufficiently large and [(dW/dV)maxmin]L exceeds the threshold, fracture initiation could lead to global failure. The local and global failure instability of a composite structural component is studied by application of the strain energy density theory. The depicted configuration is that of a panel with a circular hole reinforced by two side strips made of different material. The case of two symmetric cracks emanating from the hole and normal to the applied uniaxial tensile stress is also analyzed. Results are displayed graphically to illustrate the geometry and dissimilar material properties influence the fracture instability behavior of the two examples.  相似文献   

12.
We consider the homogenization of a time-dependent heat transfer problem in a highly heteregeneous periodic medium made of two connected components having finite heat capacities cα(x) and heat conductivities aα(x), α=1,2, of order one, separated by a third material with thickness of order ε the size of the basic periodicity cell, but with conductivity λa3(x) where a3=O(1) and λ tends to zero with ε. Assuming only that ci(x)?0 a.e., such that the problem can degenerate (parabolic-elliptic), we identify the homogenized problem following the values of δ=limε→0ε2/λ. To cite this article: M. Mabrouk, A. Boughammoura, C. R. Mecanique 331 (2003).  相似文献   

13.
Thermal-stress induced phenomena in two-component material:Part Ⅱ   总被引:1,自引:1,他引:0  
The paper deals with analytical models of the elastic energy gradient Wsq representing an energy barrier. The energy barrier is a surface integral of the elastic energy density Wq. The elastic energy density is induced by thermal stresses acting in an isotropic spherical particle (q = p) with the radius R and in a cubic cell of an isotropic matrix (q = m). The spherical particle and the matrix are components of a multi-particle-matrix system representing a model system applicable to a real two-component material of a precipitation-matrix type. The multi-particle-matrix system thus consists of periodically distributed isotropic spherical particles and an isotropic infinite matrix. The infinite matrix is imaginarily divided into identical cubic cells with a central spherical particle in each of the cubic cells. The dimension d of the cubic cell then corresponds to an inter-particle distance. The parameters R, d along with the particle volume fraction v = v(R, d) as a function of R, d represent micro- structural characteristics of a real two-component material. The thermal stresses are investigated within the cubic cell, and accordingly are functions of the microstructural charac- teristics. The thermal stresses originate during a cooling pro- cess as a consequence of the difference am - ap in thermal expansion coefficients between the matrix and the particle, am and ap, respectively. The energy barrier Wsq is used for the determination of the thermal-stress induced strengthening aq. The strengthening represents resistance against com- pressive or tensile mechanical loading for am - ap 〉 0 or am - ap 〈 0. respectively.  相似文献   

14.
In this paper an extended Lagrangian formalism for the rheonomic systems with the nonstationary constraints is formulated, with the aim to examine more completely the energy relations for such systems in any generalized coordinates, which in this case always refer to some moving frame of reference. Introducing new quantities, which change according to the law τa=φa(t), it is demonstrated that these quantities determine the position of this moving reference frame with respect to an immobile one. In the transition to the generalized coordinates qi they are taken as the additional generalized coordinates qa=τa, whose dependence on time is given a priori. In this way the position of the considered mechanical system relative to this immobile frame of reference is determined completely.Based on this and using the corresponding d'Alembert–Lagrange's principle, an extended system of the Lagrangian equations is obtained. It is demonstrated that they give the same equations of motion qi=qi(t) as in the usual Lagrangian formulation, but substantially different energy relations. Namely, in this formulation two different types of the energy change law dE/dt and the corresponding conservation laws are obtained, which are more general than in the usual formulation. So, under certain conditions the energy conservation law has the form E=T+U+P=const, where the last term, so-called rheonomic potential expresses the influence of the nonstationary constraints.Afterwards, a detailed analysis of the obtained results and their connection with the usual formulation of mechanics are given. It is demonstrated that so formulated energy relations are in full accordance with the corresponding ones in the usual vector formulation, when they are expressed in terms of the rheonomic potential. Finally, the obtained results are illustrated by several simple, but characteristic examples.  相似文献   

15.
Summary A comparative study was made of the large deformation and rupture properties of doughs from a medium strength and a weak wheat flour. Experiments were made by stretching, at a uniform rate, dough rings immersed in a liquid of matching density to prevent the rings from deforming under their own weight. Data were obtained on doughs differing in water content at temperatures from 5 to 45 °C and extension rates from 0.132 to 52.6 inches per minute.Essentially, the tensile properties of each dough could be represented by four characteristic functions, each dependent on only one of the variables: strain, time, temperature, and water content. The strain function (), equaled (In)/, where is the extension ratio, for extensions up to about 90% and, in some instances, up to nearly 200%. Thus, over extended ranges of strain, isochronal stress-strain data (representing comparable states of stress relaxation) gave a direct proportionality between true stress and theHencky strain, H=In; the proportionality constant is the constant strain rate modulus,F (t*), evaluated at the (isochronal) timet *. The modulusF(t,T,W — a function of timet, temperatureT, and water absorptionW-equals (T/T 0)F (t *,T 0,W 0) (t/t * a T a W)n, wheren is a negative constant characteristic of the flour,F (t *,T 0,W 0) is the modulus at timet * at the reference temperatureT 0 for a dough having the reference water absorptionW 0;a T anda W are shift factors that account for the change of relaxation times with temperature and water content. The factor ay obeyed theArrhenius equation and gave activation energies of about 7.7 and 22.8 kcal for doughs from the medium strength and weak flour, respectively. Rupture data obtained at different temperatures and extension rates were superposed by usinga T data and also were represented by failure envelopes. The shift factora W appears to depend somewhat on temperature, especially for the weaker flour.Differences in the rheological behavior of doughs from the two flours were evident in: (1) the range over which the isochronal stress-strain behavior could be linearized; (2) the magnitude of the characteristic exponentn; (3) the magnitude and the temperature dependence of the moduli; (4) the activation energies; (5) the effect of temperature ona W; and (6) several characterizing plots prepared to represent rupture data.
Zusammenfassung Es wurde eine Vergleichsuntersuchung betreffend große Verformungen und Brucheigenschaften von Teigen aus zwei Weizenmehltypen durchgeführt. Die Versuche wurden in der Weise ausgeführt, daß man Teigringe, die in eine Flüssigkeit von entsprechender Dichte eingetaucht waren, um zu verhindern, daß sich die Ringe unter der Wirkung ihres eigenen Gewichtes verformten, mit gleichbleibender Geschwindigkeit streckte. Es wurden Werte für verschiedene Teige ermittelt, die sich durch ihren Wassergehalt unterschieden, und zwar bei Temperaturen von 5–45 °C und Dehnungsgeschwindigkeiten von 0,132–52,6 Zoll pro Minute.Die Zugeigenschaften eines jeden Teiges konnten im wesentlichen durch vier charakteristische Funktionen dargestellt werden, von denen jede lediglich von einer der Veränderlichen: Verformung, Zeit, Temperatur und Wassergehalt abhing. Die Verformungsfunktion () war gleich (In)/, worin das Dehnungsverhältnis bedeutet, und zwar für Dehnungen bis zu ungefähr 90%, in einigen Fällen sogar bis zu fast 200%. Somit ergab sich über einem ausgedehnten Verformungsbereich für die isochronen Kraft-Dehnungs-Werte (die vergleichbare Zustände der Spannungsrelaxation darstellen) eine direkte Proportionalität zwischen wahrer Spannung undHencky- Verformung, H=In; die Proportionalitätskonstante ist der ModulF (t*), genommen bei konstanter Verformungsgeschwindigkeit und der (isochronen) Zeit t*. Der ModulF (t, T, W)eine Funktion der Zeitt, der TemperaturT und der WasserabsorptionW — läßt sich darstellen durch (T/T 0)F (t *,T 0,W 0 ) (t/t * a T a W)n, worinn eine für das Mehl charakteristische negative Konstante undF (t *,T 0,W 0) der Modul zur Zeitt * bei der BezugstemperaturT 0 ist für einen Teig, der die Bezugs-WasserabsorptionW 0 hat;a T unda W sind Verschiebungsfaktoren, die der Veränderung der Relaxationszeiten mit der Temperatur und dem Wassergehalt Rechnung tragen. Der Faktor ay gehorcht derArrhenius-Gleichung und ergibt Aktivierungsenergien von ungefähr 7,7 bzw. 22,8 kcal für die Teige der beiden Mehltypen. Bruchwerte, die bei verschiedenen Temperaturen und verschiedenen Dehnungsgeschwindigkeiten erhalten wurden, ließen sich durch Verwendung vona T-Daten überlagern und durch eine Brucheinhüllende (failure envelope) darstellen. Der Verschiebungsfaktora W scheint etwas von der Temperatur abzuhängen, und zwar besonders bei dem schwächeren Mehl.Unterschiede im rheologischen Verhalten von Teigen aus den beiden Mehlsorten bestanden offensichtlich in Bezug auf: (1) den Bereich, über den das isochrone Kraft-Dehnungs-Verhalten linearisiert werden konnte, (2) die Größe des charakteristischen Exponentenn, (3) die Größe und die Temperaturabhängigkeit der Moduln, (4) die Aktivierungsenergien, (5) die Wirkung der Temperatur aufa W und (6) einige graphische Darstellungen zur Charakterisierung der Bruchwerte.
  相似文献   

16.
Summary The laminar forced convection heat transfer in the entrance region of a flat rectangular duct is studied. In this region temperature and velocity profiles are simultaneously developed. The basic governing equations of momentum, continuity, and energy are expressed in finite difference form and solved numerically by use of a high speed computer for a mesh network superimposed on the flow field. All fluid properties are assumed to be constant. The cases of uniform constant wall temperature and of uniform constant heat flux from wall to fluid are considered. Nusselt numbers are reported for Prandtl numbers in the range of 0.01 to 50. The exact solution of the energy equation obtained by means of the numerical method is compared with the results of approximate solutions.Nomenclature A surface area of channel walls through which heat is being transferred - a duct half-height - C p specific heat at constant pressure - D e equivalent diameter for a duct, 4a - G Z Graetz number, Re d Pr/(x/D e ) - h heat-transfer coefficient, Q/{A(t)} - k thermal conductivity of the fluid - Nu m average Nusselt number, h m D e /k - Nu x local Nusselt number, h x D e /k - Pr Prandtl number, C p /k - p fluid pressure - p 0 pressure at channel mouth - P dimensionless pressure, (p–p 0)/u 0 2 - Q heat-transfer rate - Re a Reynolds number, u 0 a/ - Re d diameter Reynolds number, u 0 D e /=u 04a/ - t temperature - t 0 temperature of fluid at entrance section of channel - t 1 constant wall temperature - t w wall temperature - u fluid velocity in x-direction - u 0 fluid velocity at inlet - U dimensionless u velocity, u/u 0 - v fluid velocity in y-direction - V dimensionless velocity, av/ - x coordinate along channel - X dimensionless x-coordinate, x/(a 2 u 0)=(x/a)/Re a - X dimensionless x-coordinate defined as x/(D e 2 u 0)=(x/D e )/Re d =X/16 - y coordinate across channel - Y dimensionless y-coordinate, y/a - thermal diffusivity of fluid, k/C p - kinematic viscosity of fluid - fluid density - dynamic viscosity of fluid - dimensionless temperature, defined by (8), (t–t 0)/(t 1t 0) for constant wall temperature, k(t–t 0)/(ag) for constant heat flux case - b,x dimensionless bulk temperature at any location x, defined by (15) - w dimensionless wall temperature defined by (8)  相似文献   

17.
The vaporization characteristics of a liquid hexanes jet in a lab-scale test section with a plain orifice-type injector were experimentally investigated. The experimental measurements were carried out on the basis of the infrared laser extinction method using two He–Ne lasers (one at 632.8 nm and the other at 3.39 μm). The momentum flux ratio (qF/A) was varied from 20 to 60 over 20 steps, and the supplying air temperature (TA) was changed from 20 to 260 °C over 120 steps. The objectives of the current study were to assess the vaporization characteristics of a liquid hexanes jet and to derive a correlation between flow conditions and hexanes vapor concentration in a jet-in-crossflow configuration. From the results of the experimental measurement, it was concluded that hexanes vapor concentration increased with the increase of the momentum flux ratio and the supplying air temperature. An experimental correlation between flow conditions and hexanes vapor concentration (ZF) was proposed as a function of the normalized horizontal distance (x/do), the supplying air temperature (TA), the momentum flux ratio (qF/A), the fuel jet Reynolds number (ReF), and the fuel jet Weber number (WeF).  相似文献   

18.
We derive an analytical solution to the stress concentration factor (kt)(kt) for slightly roughened random surfaces. Topology is assumed to possess Gaussian distribution of heights and auto correlation length, ACL  . For our development, we combine Gao’s first-order perturbation method, the Hilbert transform, and an energy conservation principal related to the Parseval theorem.The root-mean-square (RMS) value of ktkt results in a function of the ratio RMS-roughness to ACL. The derived formula agrees with experimental results previously reported. The results provide insight for more efficient design.  相似文献   

19.
Steady irrotational flow of inviscid liquid of density ρl around a spherical gas bubble which lies on the axis of a cylindrical pipe is investigated using the analysis of Smythe (Phys. Fluids 4 (1961) 756). The bubble radius b=qa is assumed small compared to the pipe radius a, and the interfacial tension between gas and liquid is γ. Far from the bubble, in the frame in which the bubble is at rest, the liquid velocity along the pipe is v0, whereas the liquid velocity at points on the wall closest to the bubble is Uzw=v0(1+1.776q3+⋯). The decrease in wall pressure as the bubble passes is therefore Δp=1.776ρlv02q3. When the Weber number W=2bv02ρl/γ is small, the bubble deforms into an oblate spheroid with aspect ratio χ=1+9W(1+1.59q3)/64. If the fluid viscosity μ is non-zero, and the Reynolds number Re=2v0ρlb/μ is large, a viscous boundary layer develops on the walls of the pipe. This decays algebraically with distance downstream of the bubble, and an exponentially decaying similarity solution is found upstream. The drag D on the bubble is D=12πμv0b(1−2.21Re−1/2)(1+1.59q3)+7.66μv0bRe1/2q9/2, larger than that given by Moore (J. Fluid Mech. 16 (1963) 161) for motion in unbounded fluid. At high Reynolds numbers the dissipation within the viscous boundary layers might dominate dissipation in the potential flow away from the pipe walls, but such high Reynolds numbers would not be achieved by a spherical air bubble rising in clean water under terrestrial gravity.  相似文献   

20.
We consider the dynamics of N boson systems interacting through a pair potential N ?1 V a (x i ?x j ) where V a (x)=a ?3 V(x/a). We denote the solution to the N-particle Schrödinger equation by Ψ N, t . Recall that the Gross-Pitaevskii (GP) equation is a nonlinear Schrödinger equation and the GP hierarchy is an infinite BBGKY hierarchy of equations so that if u t solves the GP equation, then the family of k-particle density matrices solves the GP hierarchy. Under the assumption that a=N ?? for 0N→∞ the limit points of the k-particle density matrices of Ψ N, t are solutions of the GP hierarchy with the coupling constant in the nonlinear term of the GP equation given by ∫V(x)dx. The uniqueness of the solutions of this hierarchy remains an open question.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号