首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The molecular arrangement of 5CB confined within the cylindrical pores of Anopore membranes was characterized by means of the IR-order parameter obtained from linear dichroism measurements of selected IR absorption bands. The treatment of the experimental data includes a local field correction extended to the twisted nematic configuration, yielding order parameters increased by about 30% in comparison with the uncorrected data. The nematic director of 5CB aligns along the pore axes, whereas in lecithin coated Anopore channels, the local nematic director is oriented approximately radially due to the perpendicular anchoring of the 5CB molecules at the pore wall. Doping of 5CB with the chiral agent CB15 yields local nematic directors tilted with respect to the pore axes. The average tilt angle increases up to about 40° at a fraction of CB15, x cb15 = 0.25 (w/w). These results are discussed in terms of the conical helicoidal and alternatively the radially twisted axial arrangement of the LC molecules within submicrometer cylindrical cavities.  相似文献   

2.
Abstract

We have studied the heat capacity of the thermotropic liquid crystal, octylcyanobiphenyl (8CB), confined to the nearly cylindrical, 0·2 μm diameter pores of Anopore membranes. Orientation of the nematic director within the pores can be controlled with surface treatment. It is known from NMR measurements that the nematic director is aligned parallel to the pore axis in the untreated membrane. A perpendicular alignment is obtained when the pore surface is treated with lecithin. The second order smectic A to nematic (SA–N) and the weakly first order nematic to isotropic (N–I) phase transitions of 8CB were studied in these pores, for both director orientations, using an AC calorimetry technique. Effects on heat capacity amplitudes, transition temperature shifts, rounding and broadening of these phase transitions will be presented and contrasted with bulk measurements.  相似文献   

3.
Broadband dielectric spectroscopy (up to 109 Hz) is employed to study the molecular dynamics of the liquid crystal 4-n-pentyl-4'-cyanobiphenyl (5CB) in the free bulk phase and confined in cylindrical channels of Anopore membranes having a diameter of 0.2 μm and length of about 60 μm. The bulk samples of 5CB orient almost homeotropically between the untreated metal electrodes of the measurement set-up, and two relaxation processes are observed: the slower δ-relaxation is assigned to hindered rotation (180° flips) of the molecules around their molecular short axis, and a faster second process is attributed to the tumbling of the molecules about this axis. In the confined 5CB samples, the membrane pores align the nematic director axially or radially depending upon their surface preparation. Planar (axial) alignment is always found in untreated membranes, whereas radial alignment was achieved by treatment with decanoic acid. Consequently the director field is fixed perpendicular or parallel to the electric field and we are able to study each of the two relaxation processes separately by appropriate surface treatment of the pores. The frequencies of both processes are found to be unchanged with respect to the bulk phase. We extract the frequency dependence of the dielectric anisotropy δε from the dispersion curves of ε∥ and ε⊥. Two changes of sign of δε = (ε∥-ε⊥) are detected as predicted in the literature.  相似文献   

4.
Measurements of the specific heat and the static dielectric permittivity of heptyloxycyanobiphenyl (7OCB) confined to the 0.2 microm diameter parallel cylindrical pores of Anopore membranes in the isotropic phase and nematic mesophase, are presented. A comparison between the bulk and the confined 7OCB in treated and untreated pore wall surfaces using a chemical surfactant (HTBA) is performed. Both the treated and untreated membrane confinements seem to affect the nematic-to-isotropic phase transition by a downshift in transition temperature and some rounding at the specific-heat maximum, in a way similar to that which was earlier published for other liquid crystals confined in the same geometry. The static dielectric measurements clearly point out that untreated membrane confinement is axial, with the nematic director aligned parallel to the pore axis being homeotropic bulklike, i.e., with the nematic director aligned perpendicular to the electrode cell surfaces. After chemical surfactant treatment, the nematic director is constrained in a radial alignment being perpendicular to the pore walls. The dielectric measurements are revealed to be specially sensible to analyze the surface-induced nematic order due to the pore wall. The tricritical nature of the nematic-to-isotropic phase transition in bulk 7OCB as well as in treated and untreated Anopore confined geometries is discussed through both the specific heat and the static dielectric data.  相似文献   

5.
Photon correlation spectroscopy of light scattered by director fluctuations from an evanescent optical wave propagating in the nematic liquid crystal 5CB is used to study the interfacial dynamic behaviour of the liquid crystal. The intensity correlation function of light scattered by interfacial orientation fluctuations is measured by illuminating to give a short optical penetration depth within the nematic. These surface scattering correlation functions strongly differ from the bulk correlation function and are interpreted in terms of a nematic surface orientation mode arising from the coupling between the director field and the fluid velocity. It is shown that the analysis of the surface mode gives a method for measuring anchoring energies in liquid crystals. The anchoring energy obtained for rotation of the director away from the rubbing direction about an axis normal to the surface for 5CB at a rubbed nylon surface is 7.14±0.7 × 10-2 ergcm-2.  相似文献   

6.
《Liquid crystals》1999,26(10):1555-1561
A polar electro-optic response is observed in droplets of an achiral nematic liquid crystal in coexistence with the isotropic phase. Between crossed polarizers each pancake-shaped droplet shows extinction brushes in the form of a centred cross aligned with the polarizer axes. An applied electric field E induces a rotation of the crosses about the field direction, with about half the droplets switching clockwise and the other half anticlockwise. The sense of rotation in each droplet changes when E is reversed. We propose that a twisted bipolar director structure is stabilized in the droplets by a relatively large splay elastic constant and tangential boundary conditions. The molecules twist along the diameter of the droplets, perpendicular to the applied field, which results in a linear rotation of the director by the inverse flexoelectric effect. Since the molecules are achiral, the handedness of the twist, and hence the sense of the switching, in any droplet is arbitrary.  相似文献   

7.
A polar electro-optic response is observed in droplets of an achiral nematic liquid crystal in coexistence with the isotropic phase. Between crossed polarizers each pancake-shaped droplet shows extinction brushes in the form of a centred cross aligned with the polarizer axes. An applied electric field E induces a rotation of the crosses about the field direction, with about half the droplets switching clockwise and the other half anticlockwise. The sense of rotation in each droplet changes when E is reversed. We propose that a twisted bipolar director structure is stabilized in the droplets by a relatively large splay elastic constant and tangential boundary conditions. The molecules twist along the diameter of the droplets, perpendicular to the applied field, which results in a linear rotation of the director by the inverse flexoelectric effect. Since the molecules are achiral, the handedness of the twist, and hence the sense of the switching, in any droplet is arbitrary.  相似文献   

8.
Broadband dielectric spectroscopy (10(-2)-10(9) Hz) was employed to investigate the molecular dynamics of the liquid crystalline mixture E7 confined in both untreated and lecithin-treated 20 nm Anopore membranes. Because E7 does not crystallize, it was possible to cover a temperature range of more than 200 K, providing an exhaustive dielectric characterization of a liquid crystal confined to Anopore membranes for the first time. In the nematic state, the tumbling (alpha-) and the delta-relaxation are observed, also under confinement conditions. The analysis of their relative intensities give that the orientation of the E7 molecules is preferentially axial in untreated but opposite radial in lecithin-treated pores. The radial alignment of the liquid crystals in the modified membrane is understood as a tail-to-tail conformation of E7 molecules imposed by the adsorbed lecithin molecules. The relaxation rate of the alpha-process is enhanced for E7 confined in native Anopore compared with the bulk and E7 in treated pores. This is interpreted as resulting from a less dense molecular packing of E7 in the middle of the pore compared to the bulk. In both untreated and treated membranes, the relaxation rate of the delta-process is higher than in the bulk, and the values of the respective Vogel-Fulcher-Tammann temperatures depend on the actual surface treatment. Additionally, a surface process, due to molecular fluctuations of molecules within an adsorbed layer at the pore wall, was detected.  相似文献   

9.
Multi-walled carbon nanotubes (MWCNTs) have been shown to self-organise, and when added as a guest to form a nanocomposite, their director couples with an organic liquid crystal (LC) host. Here, effects of MWCNTs on the low-frequency dielectric properties and Fréedericksz transition of the LC 4-cyano-4?-pentylbiphenyl (5CB) are studied. Anti-parallel electro-optic cells were filled with nanocomposites at weight percent concentrations of MWCNT to 5CB of: 0 (neat), 0.01, 0.10, 0.20, and 0.50. Low concentration was chosen to minimise Van der Waals attraction normally responsible for aggregation of MWCNTs. Dielectric relaxation spectroscopy was used to study interactions between MWCNTs and 5CB at frequencies from 20 Hz to 1 MHz. We propose a mechanism based upon measurements of the complex dielectric function which suggests that MWCNTs act as a slow-moving boundary within the sample cell at low frequencies and low applied electric fields, where the MWCNTs reorient along with the 5CB LC molecules. At higher frequencies and larger applied electric fields, the 5CB molecules rotate about their long axes while motion of the MWCNTs is frozen out.  相似文献   

10.
NMR field-cycling measurements of the Larmor frequency (v) and angular (Δ) dependences of the longitudinal proton spin relaxation time T1 for the nematic liquid crystals 5CB and 8CB allow a more detailed analysis of the underlying molecular motions than data available previously. All T1 (v, Δ) dispersion profiles essentially distinguish three frequency ranges where T1 is governed by either local field effects, collective motions (director order fluctuations), or rotational and translational diffusion of individual molecules or molecular groups, respectively. The angular dependence supports and extends previous conclusions about the significance of the order fluctuation term at low (kHz) and high (MHz) Larmor frequencies; in addition it is the basis for the disentanglement of local field effects, which involve Jeener's dipolar relaxation, and of the sophisticated rotational relaxation models suggested in the literature by Dong, Nordio and Vold. It is found that Vold's third rate concept gives the best explanation of the measurements. The results on the rotational diffusion processes essentially agree with deuteron studies from the literature, but also reveal clear distinctions with regard to the anisotropy parameter σ, essentially due to the improved separation from the order fluctuation contribution.  相似文献   

11.
The translational diffusion constant, D, of a polymer solute in a single-domain, nematic liquid crystal solvent (5CB) is measured in directions parallel and perpendicular to the nematic director using a fluorescence two-beam, cross-correlation technique. The solute under investigation is the stiff, conjugated polymer, MEH-PPV. The ratio D parallel/D perpendicular) of diffusion constants (parallel and perpendicular to the director) is observed to be 1.9 +/- 0.3. This is surprisingly small considering that MEH-PPV is known to be both elongated and highly aligned along the liquid crystal director of 5CB. We therefore argue that the structural order parameter of the solvent governs the anisotropy of the diffusion of the solute.  相似文献   

12.
NMR field-cycling measurements of the deuteron spin relaxation dispersion T1(v) for the fully deuteriated nematic liquid crystal 4-n-pentyl-4'-cyanobiphenyl (5CB-d19) over a broader Larmor frequency range (v≈10 kHz to 30 MHz) than reported so far in the literature basically confirm the magnetic relaxation mechanisms previously observed by frequency dependent proton spin studies of various nematogenic molecules, namely collective nematic modes of the director field in the kilohertz regime, and anisotropic reorientations of individual molecules (mainly self-diffusion for the protons and mainly rotations about the long axis for the deuterons) in the megahertz range. Within the experimental error limits such a model allows a self-consistent interpretation of the available deuteron and proton T1(v) results for deuteriated or protonated 5CB, respectively. In particular, the magnitudes of the measured order fluctuation contributions are in approximate accordance, i.e. within a factor of less than two, with theoretical estimates from NMR line splittings and the relevant material parameters. More exact and more extensive deuteron studies are needed to locate the origin of the observed minor inconsistency.  相似文献   

13.
We have calculated the twist viscosity and the alignment angle between the director and the stream lines in shear flow of a liquid crystal model system, which forms biaxial nematic liquid crystals, as functions of the density, from the Green-Kubo relations by equilibrium molecular dynamics simulation and by a nonequilibrium molecular dynamics algorithm, where a torque conjugate to the director angular velocity is applied to rotate the director. The model system consists of a soft ellipsoid-string fluid where the ellipsoids interact according a repulsive version of the Gay-Berne potential. Four different length-to-width-to-breadth ratios have been studied. On compression, this system forms discotic or calamitic uniaxial nematic phases depending on the dimensions of the molecules, and on further compression a biaxial nematic phase is formed. In the uniaxial nematic phase there is one twist viscosity and one alignment angle. In the biaxial nematic phase there are three twist viscosities and three alignment angles corresponding to the rotation around the various directors and the different alignments of the directors relative to the stream lines, respectively. It is found that the smallest twist viscosity arises by rotation around the director formed by the long axes, the second smallest one arises by rotation around the director formed by the normals of the broadsides, and the largest one by rotation around the remaining director. The first twist viscosity is rather independent of the density whereas the last two ones increase strongly with density. One finds that there is one stable director alignment relative to the streamlines, namely where the director formed by the long axes is almost parallel to the stream lines and where the director formed by the normals of the broadsides is almost parallel to the shear plane. The relative magnitudes of the components of the twist viscosities span a fairly wide interval so this model should be useful for parameterisation experimental data.  相似文献   

14.
The nematic substance 5CB is known from N.M.R. studies to be slightly biaxial, not in the sense that any bulk property measured in a direction at right angles to the director is liable to vary with rotation about the director, but in the sense that there are biaxial terms in the ordering matrix that describes the alignment of individual molecules; (Sxx - Syy) is non-zero as well as Szz. We show that the biaxial terms should make a significant contribution to the magnetic anisotropy Δχ(m) of 5CB, and that the magnitude and temperature dependence of this bulk property, which we have measured, can be understood if, and only if, they are taken into account. The contribution which they make to the optical birefringence term ∑ should, however, be relatively trivial. Although ∑ may in principle be affected by local field corrections of a complicated nature, which do not affect Δχ(m), a new theory presented in an Appendix to the paper suggests that these too are likely to be relatively trivial. Hence we believe that ∑ is more nearly proportional than is Δχ(m) to the principal order parameter Szz.

The paper includes unpublished data for the magnetic anisotropy and/or the principal refractive indices, ne and no, in a number of other nematics (6CB, 7CB, 8CB, 9CB, 5OCB, 6OCB, 7OCB, 8OCB, 7CCH, MBBA and PAA). Comparison between the temperature dependence of Δχ(m) and of ∑ suggests that biaxiality is present in all cyanobiphenyls, on much the same scale as in 5CB, and is not affected by the presence of an oxygen atom between the phenyl core of the molecule and its alkyl tail.  相似文献   

15.
In the present work, we analyze pulsed deuterium NMR experiments performed on the isotropic and nematic phases of the banana-shaped liquid-crystalline mesogen 4-chloro-1,3-phenylene bis{4-4'-(11-undecenyloxy) benzoyloxy} benzoate (ClPbis11BB) selectively deuterated on the central ring. Starting from a previous evidence of unusual slow dynamics in the isotropic phase (Domenici V. et al., J. Phys. Chem. B 2005, 109, 769), a quantitative and model-supported analysis of the deuterium NMR data is performed here by accounting for slow-motional modulation of the magnetic anisotropies through the full solution of the stochastic Liouville equation. Focusing on the quadrupolar echo experiments performed in the nematic phase, the analysis of the transverse relaxation rate has been carried out by considering single-molecule motions and fluctuations of the local director. The main conclusions are: (a) director fluctuations are not relevant on driving the signal relaxation; (b) molecular reorientations about transverse axes control the dynamic regime of the signal relaxation and impose a full slow-motional treatment; (c) the small amplitude tumbling of the molecule within the wells of orientational potential occurs with characteristic times up to the microsecond. The outcome of our analysis has to be taken as indicative of very slow dynamics concerning out-of-plane motions of the molecules. Besides the specific application, this paper also offers the methodological tools to treat the pulsed deuterium NMR experiment in the slow-motional regime of reorientational motions and provides a detailed comparison with the usually employed fast-motional approximation.  相似文献   

16.
Traditional approaches to the use of Raman spectroscopy as an aid to the determination of local order parameters in liquid crystalline materials have employed polarizations of the excitation source and/or the analyser which are orthogonal to the liquid crystalline director. The present paper describes a Raman study, which seeks to take advantage of the additional information available from examining the complete range of orientations of the director in relation to these polarization directions. A theory is developed which shows how it is possible to use this additional information to derive more reliable values of the P2 and P4 local order parameters in homogeneous and twisted nematic liquid crystal cells.  相似文献   

17.
We study the alignment behaviour of the chromonic liquid crystal phases of sunset yellow (SSY)/water, disodium cromoglycate (DSCG)/water and their mixtures when confined in cells by polymer films topographically imprinted with linear channels of 250 nm width, depth and spacing. A variety of novel alignment effects are generated by contact with such a patterned surface, as follows. Nematic DSCG and nematic SSY at low concentration and their nematic mixtures orient with the long axes of stacked chromonic aggregates on average parallel to the channels, that is, with the molecular planes normal to the channel axis. These oriented nematics exhibit isotropic/nematic tactoids aligned with their major axes along the channels. Two geometries of the tactoids, elliptic cylinder and rectangular cuboid with hemi cylindrical ends are observed. Additionally, a transition of DSCG tactoids from a three-dimensional (3D) director configuration to a two-dimensional one is observed when the tactoids on one surface of a cell touch the other surface of the cell. In SSY solutions of sufficiently high concentration, multi-stable alignment is found, including preferential in-plane orientation of the director parallel to, perpendicular to and 45° rotated from the channels.  相似文献   

18.
The proton spin–lattice relaxation time (T1) dispersion was studied under simultaneous sonication in the nematic phase of 5CB. It appears that metastable ordered states subject to a memory effect can be induced by the combined action of an amplitude-modulated ultrasonication and a pulsed magnetic field. We argue that the acoustic amplitude modulation adds instability to the nematic phase through director order fluctuation enhancement. Different manipulated states of the director were unambiguously identified by the Larmor frequency dispersion of T1. The field-cycling NMR technique was used for T1 measurements.  相似文献   

19.
To study the effect of the alkyl tail and the terminal dipole on the stability of the liquid crystalline phase of mesogens, we have carried out molecular dynamics simulations for 1CB(4-methyl-4'-cyanobiphenyl) and 5CB(4-n-pentyl-4'-cyanobiphenyl) by using a coarse-grained model. In the coarse-grained model, a 5CB molecule is divided into the rigid part of 1CB moiety, which is represented by an ellipsoid, and the remaining flexible part which is represented by a chain of united atoms. The nonbonded potential between coarse-grained segments is represented by the generalized Gay-Berne (GB) potential and the potential parameters are determined by directly comparing the GB potential with the atomistic potentials averaged over the rotation of the mesogen around its axis. In addition, a dipole moment is placed at one end of the ellipsoid opposite to the flexible tail. The ordered state obtained in the polar 5CB model was assigned as the nematic phase, and the experimental static and dynamical properties were reproduced well by using this coarse-grained model. Both the dipole-dipole interactions and the thermal fluctuation of the flexible tail increase the positional disorder in the director direction, and stabilize the nematic phase. Thus, the nematic phase in the polar 5CB is induced by a cooperative effect of the flexible tail and the terminal dipole. It is noted that a local bilayer structure with head-to-head association is formed in the nematic phase, as experimentally observed by x-ray diffraction measurements.  相似文献   

20.
We experimentally studied a nematic liquid crystal whose molecules form twisted head-to-head H-bonded dimers. We observed that when the material transformed from the isotropic to nematic phase, it formed droplets with chiral propeller textures. We carried out a computer simulation to investigate the liquid crystal director configuration inside the droplets and to study the effects of elastic constants and chirality on the droplet texture. Results of our study show it is likely that the material in the droplets had nonzero chirality due to spontaneous chiral phase separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号