首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Tanja Djekic 《Adsorption》2007,13(3-4):231-237
The scope of this work is to determine the effective intraparticle diffusion coefficient of CoCl2 over mesoporous functionalized silica. Silica is selected as a carrier of the functionalized groups for its rigid structure which excludes troublesome swelling, often found in polymeric adsorbents. 2-(2-pyridyl)ethyl-functionalized silica is selected as a promising affinity adsorbent for the reversible adsorption of CoCl2. The adsorption kinetics is investigated with the Zero Length Column (ZLC) method. Initially, experiments were performed at different flow rates to eliminate the effect of external mass transfer. The effect of pore size (60 Å and 90 Å), particle size (40?10?6 m–1000?10?6 m) and initial CoCl2 concentration (1 mol/m3–2.0 mol/m3) on the mass transfer was investigated. A model was developed to determine the pore diffusion coefficient of CoCl2 by fitting the experimental data to the model. The pore diffusion coefficients determined for two different pore sizes of silica are D p (60 Å) =1.95?10?10 [m2/s] and D p (90 Å) =5.8?10?10 [m2/s]. The particle size and the initial CoCl2 concentration do not have an influence on the value of diffusion coefficient. However, particle size has an influence on the diffusion time constant. In comparison with polymer adsorbents, silica based adsorbents have higher values of diffusion coefficients, as well as a more uniform and stable pore structure.  相似文献   

3.
We consider a diffusion model with limit cycle reaction functions. In an unbounded domain, diffusion spreads pattern outwards from the source. Convection adds instability to the reaction–diffusion system. We see the result of the instability in a readiness to create pattern. In the case of strong convection, we consider that the first-order approximation may be valid for some aspects of the solution behaviour. We employ the method of Riemann invariants and rescaling to transform the reduced system into one invariant under parameter change. We carry out numerical experiments to test our analysis. We find that most aspects of the solution do not comply with this, but we find one significant characteristic which is approximately first order. We consider the correspondence of the Partial Differential Equation with the Ordinary Differential Equation along rays from the initiation point in the transformed system. This yields an understanding of the behaviour.  相似文献   

4.
An approximate rate equation based on a film-model representation of diffusional mass transfer has been developed to describe the kinetics of multicomponent adsorption. The model describes mass transfer as a pseudo-steady state diffusion process through a flat film of thickness equal to one fifth of the particle radius. The flux relationships are integrated across the film yielding analytical expressions for the rate of mass transfer in a multicomponent adsorption system. The usefulness of the film model approximation is tested by carrying out calculations for three different practical adsorption systems: the adsorption of n-pentane and n-heptane mixtures on NaCaA zeolite discussed by Marutovsky and Bülow (1987); the adsorption of air in molecular sieve RS-10 discussed by Farooq et al. (1993); and the separation of air in a kinetically-controlled nitrogen PSA process discussed by Farooq and Ruthven (1990) and Sundaram and Yang (1998). In each case, the film model approximation predicts the expected trends accounting for the coupling of diffusion fluxes in the adsorbed phase.  相似文献   

5.
选用Co/ZrO2催化剂,通过改变催化剂颗粒径,在积分固定床反应器上研究了内扩散行为对F-T合成反应过程的影响。以表观活化能、烯/烷比的变化等为依据,考察了内扩散行为对F-T合成反应历程、催化剂活性及产物选择性的影响。催化剂颗粒径不同,内扩散限制程度会发生相应变化。实验结果表明,不同程度的内扩散限制条件下,F-T合成反应历程会有较大差异。当反应开始后,颗粒内孔从"干"到"湿",不同粒径的催化剂颗粒上气态烯/烷比变化均呈"U"型趋势。在固定床反应器上,增加空速通常会有CH4选择性升高、气态烯/烷比略有增加的现象,这是由于内扩散限制未完全消除的缘故。  相似文献   

6.
The Marangoni effect describes how fluid flows in response to gradients in surface energy. This phenomenon could be broadly harnessed to pattern the surface topography of polymer films if generalizable techniques for programming surface energy gradients existed. Here, a near UV–visible light (NUV–vis) photosensitizer, 9,10‐dibromo‐anthracene (DBA), was doped into thin films of a model polymer, poly(isobutyl methacrylate). After exposure to light through a photomask and heating above the glass transition, thermolysis of photo‐oxidized DBA and grafting to the polymer promoted flow of the film material into the exposed regions. This mechanism did not significantly alter the molecular weight of PiBMA or the film's glass transition temperature, but resulted in an increase in film surface energy as indicated by a decrease in water contact angle. Film height variations of 580 nm were produced using a mask with 12.5 μm features; a mask with 800 nm features was also employed to generate topographic features of corresponding width without expensive contacting equipment. Due to the broad absorbance spectra of DBA, highly accessible and/or unconventional light sources may be employed in this process; this advantage was demonstrated by patterning with sunlight. The nonspecific radical‐mediated nature of the DBA grafting reaction makes this a promising approach for many classes of polymers. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1195–1202  相似文献   

7.
Mahmut Özacar 《Adsorption》2003,9(2):125-132
The adsorption of phosphorus onto calcined alunite has been studied. Its equilibrium isotherm has been measured. The isotherm was determined by shaking 1.0 g calcined alunite, particle size range 90–150 m, with 100 mL phosphorus solution of initial concentrations from 0.5 to 2.5 mmol/L. The water bath shaking a constant rate of 200-rpm was used and the temperature maintained at 298 ± 2 K. A contact time of 120 min was required to achieve equilibrium. The experimental isotherm data were analyzed using the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich equations. The monolayer adsorption capacity is 1.355 mmol P per g calcined alunite. Three simplified kinetic models including a pseudo first-order equation, pseudo second-order equation and intraparticle diffusion equation were selected to follow the adsorption process. Kinetic parameters, rate constants, equilibrium sorption capacities and related correlation coefficients, for each kinetic model were calculated and discussed. It was shown that the adsorption of phosphorus could be described by the pseudo second-order equation.  相似文献   

8.
Parametric Study of a Pressure Swing Adsorption Process   总被引:2,自引:0,他引:2  
The performance of a pressure swing adsorption (PSA) process for production of high purity hydrogen from a binary methane-hydrogen mixture is simulated using a detailed, adiabatic PSA model. An activated carbon is used for selective adsorption of methane over hydrogen. The effects of various independent process variables (feed gas pressure and composition, purge gas pressure and quantity, configuration of process steps) on the key dependent process variables (hydrogen recovery at high purity, hydrogen production capacity) are evaluated. It is demonstrated that many different combinations of PSA process steps, their operating conditions, and the feed gas conditions can be chosen to produce an identical product gas with different hydrogen recovery and productivity.  相似文献   

9.
Fast and effective structural/compositional analysis on formulated systems represents one of the major challenges encountered in analytical science. 13C‐detected diffusion represents a promising tool to tackle the aforementioned challenges, particularly in industry. Toward exploring the generic applications of 13C‐detected diffusion, thermal convection induced by 1H decoupling has been identified as a key factor that resulted in significantly reduced resolution in the diffusion dimension. Optimization of experimental parameters and utilization of double‐stimulated echo‐based pulse sequence both can effectively suppress the thermal convection caused by the 1H decoupling, the success of which allows robust and generic applications of 13C‐detected diffusion to systems from mixtures of small molecules, polymer blends, and copolymers to actual complex formulated systems. The method is particularly powerful in differentiating small molecules from polymers, polymer blends from copolymers, and end‐group analysis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Batch equilibration studies are conducted to determine the nature of adsorption of zinc (II) over chitosan. The factors affecting the adsorption process like particle size, contact time, dosage, pH, effects of chloride and nitrate are identified. The influence of temperature and co-ions on the adsorption process is verified. The fraction of adsorption,Y t and the intraparticle diffusion rate constant,k p are calculated at different environments and the results are discussed. The nature of adsorption of the zinc (II)-chitosan system is explained using Freundlich, Langmuir isotherms and thermodynamic parameters  相似文献   

11.
A N2-CO2 mixture is separated in a rapid pressure swing adsorption apparatus, which consists of single or double adsorbent beds filled with silica gel and operates in the sequence of adsorption, backflow and desorption. Nitrogen-rich gas is produced at the top of the bed, and carbon dioxide-rich gas at the bottom. Carbon dioxide purity of 89.5% and recovery of 70% were obtained in the single-bed apparatus, while purity of 93.5% and recovery of 72.3% were obtained in the double-bed apparatus. The feed in both cases consisted of 81% N2 and 19% CO2.  相似文献   

12.
Five-step PSA cycles consisting of pressurization with product, adsorption, co-current depressurization, blowdown, and purge steps have been analyzed with equilibrium model assuming uncoupled linear isotherms and isothermal condition. Unlike the previous models, the proposed model is not restricted to the operating conditions that ensure a complete shock transition of concentration profile at the end of the high pressure adsorption step. The operating conditions could have two classifications: one is utilizing the column completely before blowdown, and the other is not. As the selectivity increases, it is more difficult to utilize the column completely before the blowdown step. There is an optimum co-current depressurization pressure which maximizes the recovery at the given extent of purge. The optimum co-current depressurization pressure decreases as the purge quantity decreases. On the less selective adsorbent, the recovery at the optimum co-current depressurization pressure increases with the decrease of purge quantity without much sacrifice of the throughput. But, on the highly selective adsorbent, there is an extent of purge and corresponding value of cocurrent depressurization pressure below which the recovery is not greatly improved while the throughput decreases rapidly, which limits the number of pressure equalization steps can be included.  相似文献   

13.
Diffusion ordered spectroscopy (DOSY) is used to determine the translational diffusion coefficients of molecules in solution. However, DOSY is highly susceptible to spurious spectral peaks resulting from thermal convection occurring in the NMR tube. Thermal convection therefore must be suppressed for accurate estimation of translational diffusion coefficients. In this study, we developed a new method to effectively suppress thermal convection using glass capillaries. A total of 6 to 18 capillaries (0.8‐mm outer diameter) were inserted into a regular 5‐mm NMR tube. The capillaries had minimal effect on magnetic field homogeneity and enabled us to obtain clean DOSY spectra of a mixture of small organic compounds. Moreover, the capillaries did not affect chemical shifts or signal intensities in two‐dimensional heteronuclear single quantum coherence spectra. Capillaries are a simple and inexpensive means of suppressing thermal convection and thus can be used in a wide variety of DOSY experiments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
In a multi-bed pressure swing adsorption (PSA) process, cycle steps with gas flow transferring from one bed to another such as equalization, purge, etc. are generally practiced to enhance the product recovery. However, if the flows for the connected beds in these steps are not balanced, the PSA process may not operate in a symmetrical manner. In the modeling of the PSA process, most of the simulations consider only one bed and assume that the rest of the beds would behave in a same way. In order to assess the impact of bed symmetry on the PSA performance, a new PSA model capable of studying bed symmetry in a two-bed system is developed. Experimental results from this paper show that uneven equalization flow can result in a lower product purity and a peculiar purity curve at different equalization levels. This phenomenon can be successfully predicted by this model. Simulation results also show that in large-scale PSA units, asymmetrical operation can cause drastically different temperature profiles in different adsorbers and hence a much lower performance. This paper demonstrates the importance of maintaining operation symmetry in PSA processes.  相似文献   

15.
A novel rapid pressure swing adsorption (RPSA) process is described for production of 25–50% oxygen enriched air. The embodiment consists of one or more pairs of adsorbent layers contained in a single adsorption vessel. The layers undergo simultaneous pressurization-adsorption and simultaneous depressurization-purge steps. A total cycle time of 6–20 seconds is used. The process yields a very large specific oxygen production rate and a reasonable oxygen recovery for production of 20–50 mole% oxygen enriched gas.It is demonstrated by a simple mathematical model of isothermal single adsorbate pressure swing ad(de)sorption concept on a single adsorbent particle that the specific production rate of a PSA process cannot be indefinitely increased by reducing the cycle time of operation when adsorbate mass transfer resistances are finite.  相似文献   

16.
The hindered diffusion and binding of proteins of different sizes (lysozyme, BSA and IgG) in an agarose gel is described using adsorption kinetic and diffusional data together with an experimentally determined pore size distribution in the gel. The validity of the pore model, including variable diffusion coefficients and porosities is tested against experimental confocal microscopy data. No fitting parameters were used in the present model. The importance of knowing the gel structure is demonstrated especially for large proteins such as IgG. Experimental confocal microscopy data can be explained by the present model.  相似文献   

17.
The Total Isomerization Process developed by Union Carbide in 1970 (Gary, 1987) for the conversion of normal paraffin's to their isomers consists of a reactor followed by a PSA unit each operating at similar pressures and temperatures. The combination of these two operations in one unit in a Pressure Swing Adsorption Reactor (PSAR) process may provide an increased throughput and a significant cost saving in ancillary equipment.The simulation of a mathematical model linking the catalyst packed-bed and the adsorbent packed-bed is reported. The catalyst is a Pd/Y-zeolite and the adsorbent is 5A zeolite. The simulated feed consists of 17% each of n- and isopentane with the remainder being hydrogen. The mathematical model assumes dispersed plug-flow in both sections, constant velocity in the reactor section but varying in the adsorber, with mass transfer in the adsorber section due to external fluid film resistance and macropore diffusion in series. The fraction of the total column length occupied by the catalyst (denoted by ) is accounted for in the model by solving numerically using orthogonal collocation on finite elements. Parameters varied are the ratio of catalyst/column length (), temperature range (506–533 K), high pressure (15–20 bars), with the low pressure held constant at 2 bars. The catalyst/column ratio has a strong effect at low temperatures. The optimum catalyst/column length ratio appears to be controlled by the low pressure step and occurs at = 0.7 for the assumptions used in this work.  相似文献   

18.
As a close relative to graphene, silicene is advanced in high lithium capacity, yet attracting various manipulation strategies to promote its role in energy storage. Following grain boundary (GB) engineering route as widely used in graphene studies, in this work, first-principles calculations were performed to investigate adsorption and diffusion behaviors of lithium on silicene with GBs of 4|8 or 5|5|8 defects. In both GB forms, donation of the Li 2s electron to the GBs significantly increases the Li adsorption energy, whereas small energy barriers facilitate the Li migration on the silicene surface. Furthermore, the large hole of GB(4-8) also permits easy penetration of the Li ions through the defective silicene sieve. These important features demonstrate GBs are beneficial for enhancing capacity and charge speed of the Li batteries. Thus, superior anodes made of silicene with GBs are expected to serve a key solution for future energy storages.  相似文献   

19.
Ravi Kumar 《Adsorption》1995,1(3):203-211
Effects of variable feed composition on the performance of a pressure swing adsorption process are analyzed by simulation. Two scenarios are considered. The first, increasing impurity, case considers low impurity concentration in the feed followed by high impurity concentration in the feed. The second, decreasing impurity, case considers high impurity concentration in the feed followed by low impurity concentration in the feed. These results are compared against a case which has an impurity concentration in the feed at an average of the high and the low impurity concentrations. Simulations show that the increasing impurity scenario is expected to perform better, and the decreasing impurity scenario is expected to perform worse than the average feed concentration case.  相似文献   

20.
A detailed model for nonisothermal sorption of multicomponent mixtures in a single sorbent particle (monodisperse or bidisperse with negligible intracrystalline mass transport limitations) under pressure swing conditions is developed in this study. The dusty-gas model is used to describe the coupling of the molar fluxes, the temperature, the partial pressures and the partial pressure gradients of the components in the pore space of the particle. The variations of the temperature are described by an energy equation in which both convective and conductive modes of heat transport are accounted for. No limitations are imposed on the number of the components in the mixture and on the type of the adsorption isotherm. The model is applied in the investigation of the industrially important air-zeolite 5A system. Two cases with respect to the surrounding gas phase are examined: infinite environment, which is representative for single particle experiments, and finite environment, which is representative for the situation in packed bed adsorbers. It is found that in an infinite environment the external and internal temperature gradients are equally important while in a finite environment the external heat transport limitations are negligible. It is concluded that in modeling the nonisothermal operation of adsorption processes occurring in packed beds it is not necessary to allow for the temperature differences between the gas phase and the surface of the adsorbing particles. Furthermore, if the temperature gradients within the particles can be neglected, only a single temperature equation is needed to describe the energy transport in the bed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号