首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A model based on the application of the Maxwell-Stefan approach has been used to describe the dynamics of intraparticle transport (pore diffusion, surface diffusion and convection) in a single pore during and after a pressurization process. The model was first compared with the model proposed by Taqvi and Levan (Adsorption, 2, 299–309 (1996)) for a linear adsorption isotherm. The effect of several parameters (pressurization rate, adsorption capacity, bulk gas-phase mole fraction, adsorption affinity and pore radius) was studied, evaluating the relative importance of each mass-transport mechanism in different conditions. A binary mixture of an inert and an adsorbable component was considered first, extending the analysis of the pore radius effect to a ternary mixture. In general, surface diffusion is dominant with very low pore radius, whereas gas-phase fluxes dominate in a large pore. However, depending on the value of the bulk gas-phase mole fraction (which is related to the surface coverage level through the adsorption equilibrium isotherm), the equilibrium and rate parameters, and the surface to volume ratio, surface diffusion cannot be always neglected for large pores. More generally, system non-linearity can switch the dominant mechanism and create fronts.  相似文献   

2.
3.
4.
The importance of adsorption induced convection in the macropores of a bidisperse adsorbent particle is studied for a step change in mole fraction or total pressure at the surface of the particle. Material balance equations for a binary gas mixture are written for both the macropores and the macropores with allowance for convection in the macropores, which is described by Darcy's law. The coupled set o1' partial differential equations is solved by orthogonal collocation. The enhancement in mass transfer as a result of convection is assessed by comparing the fractional uptake curves obtained with and without allowance for convection. Both equilibrium-based and kinetic-based separation processes are considered. The effect of the presence of convection in determining the controlling diffusional resistance (macropore or micropore) is also examined. Due to inclusion of convection no single non-dimensional group alone can determine the relative importance of macropore and micropore resistances. Results show that convection can significantly affect the performance of an equilibrium-based macropore diffusion controlled process and that the enhancement in mass transfer is more for a particle with a high value of Darcy permeability.  相似文献   

5.
Elevated-temperature pressure swing adsorption is a promising technique for producing high purity hydrogen and controlling greenhouse gas emissions. Thermodynamic analysis indicated that the CO in H_2-rich gas could be controlled to trace levels of below 10 ppm by in situ reduction of the CO_2 concentration to less than 100 ppm via the aforementioned process. The CO_2 adsorption capacity of potassiumpromoted hydrotalcite at elevated temperatures under different adsorption(mole fraction, working pressure) and desorption(flow rate, desorption time, steam effects) conditions was systematically investigated using a fixed bed reactor. It was found that the CO_2 residual concentration before the breakthrough of CO_2 mainly depended on the total amount of purge gas and the CO_2 mole fraction in the inlet syngas.The residual CO_2 concentration and uptake achieved for the inlet gas comprising CO_2(9.7 mL/min) and He(277.6 mL/min) at a working pressure of 3 MPa after 1 h of Ar purging at 300 mL/min were 12.3 ppm and0.341 mmol/g, respectively. Steam purge could greatly improve the cyclic adsorption working capacity, but had no obvious benefit for the recovery of the residual CO_2 concentration compared to purging with an inert gas. The residual CO_2 concentration obtained with the adsorbent could be reduced to 3.2 ppm after 12 h of temperature swing at 450 °C. A new concept based on an adsorption/desorption process, comprising adsorption, steam rinse, depressurization, steam purge, pressurization, and high-temperature steam purge, was proposed for reducing the steam consumption during CO/CO_2 purification.  相似文献   

6.
Theoretical development of a new experimental method for investigation of mass transport in porous membranes, based on the principle of the modified Wicke-Kallenbach diffusion cell and the nonlinear frequency response analysis is presented. The method is developed to analyze the transport of a binary gas mixture in a porous membrane. The mixture is assumed to consist of one adsorbable and one inert component. Complex mass transfer mechanism in the membrane, where bulk or transition diffusion in the pore volume and surface diffusion take place in parallel, is assumed. Starting from the basic mathematical model equations and following a rather standardized procedure, the frequency response functions (FRFs) up to the second order are derived. Based on the derived FRFs, correlations between some characteristic features of these functions on one side, and the whole set of equilibrium and transport parameters of the system, on the other, are established. As the FRFs can be estimated directly from different harmonics of the measured outputs, these correlations give a complete theoretical basis for the proposed experimental method. The method is illustrated by quantifying the transport of helium (inert gas) and C3H8 and CO2 (adsorbable gases) through a porous Vycor glass membrane.  相似文献   

7.
Grand canonical Monte Carlo and configurational-bias Monte Carlo techniques are carried out to simulate the adsorption of ternary and quaternary mixtures of short linear alkanes, involving methane, ethane, propane, and n-butane, in pillared layered materials at ambient temperature, T=300 K. In the simulation, a pillared layered pore is modeled by a uniform distribution of pillars between two layered walls built by making two separate talc lamellas parallel each other with a given size of interlayer distance. The interaction between fluid molecules and two layered walls is measured by storing potentials calculated in advance at a series of grid points. The interaction between fluid molecules and pillars is also calculated by a site-to-site method. The potential model proposed in this work is proved to be effective because of the simulation result being good agreement with the experimental data for the adsorption of nitrogen at 77 K. Then, the adsorption isotherms of mixtures of short linear alkanes in pillared layered pores with three different porosities psi=0.98, 0.93 and 0.85, and three pore widths H=1.02, 1.70 and 2.38 nm at 300 K are obtained by taking advantage of the model. The simulation results tell us that the longer chain component is preferentially adsorbed at low pressures, and its adsorption increases and then decreases as the pressure increases while the shorter chain component is still adsorbed at high pressures. Moreover, the sorption selectivity of pillared layered materials for the longest chain component in alkane mixtures increases as the mole fraction of methane in the gas phase increases. The selectivity of pillared layered materials for the longest chain component in alkane mixtures also increases as the pore width decreases and the porosity increases.  相似文献   

8.
The effect of an inert supercritical (SC) component of a gas mixture on the equilibrium adsorption conditions was investigated theoretically. The adsorption isotherms were calculated within the framework of the lattice-gas model taking into account lateral interactions of the nearest neighbors in the quasichemical approximation. The physical adsorption and chemisorption isotherms were calculated at specified chemical potentials of the main and supercritical components and at specified mole fractions of the supercritical component. The binary phase diagrams SC component-atoms of the solid characterizing the solubility conditions of SC molecules in the solids are considered.  相似文献   

9.
Using the local non-linear equilibrium approach, we investigated pressure—swing—adsorption (PSA) cycles directed toward the removal of an adsorbable impurity present in large amounts in an inert substance. Three blowdown policies are compared (the blowdown is the part of the PSA cycle in which the pressure of a column is released by rejecting gas). In one such policy, the gas resulting from blowdown is rich in the impurity and is rejected as waste. In a second policy in contrast, the production is adjusted so that the blowdown gas is pure and is considered as a product or is reused to recompress or purge another column. The third policy is intermediate, in the sense that part of the blowdown gas is pure and recovered, and part is impure and rejected.The equilibrium approach presented neglects mass-transfer and dispersion effects, but accounts for non-linear equilibria and variations in gas velocity. It thus allows analytical or semi-analytical expressions to be obtained for quantities such as the inert recovery ratio, and hence an easy qualitative discussion of the effects of operating parameters on the recovery. It is shown that the intermediate policy (partial recovery of the blowdown gas) is optimal. The adsorption of methane and ethane on activated carbon from helium or hydrogen are presented as illustrations.  相似文献   

10.
The separation of carbon dioxide from flue gas is essential for the reduction of greenhouse gas emissions. In adsorptive methods, the challenge lies in the choice of suitable porous materials. Among all zeolite topologies, a number of adsorbents with pore dimensions in the range of the guest molecules were identified to allow an excellent separation by diffusion, and MRE and AFO zeolite topologies appear to be the best candidates based on equilibrium adsorption. Also, it was found that the behavior of this gas mixture in DFT and APD zeolites differed from the normal behavior.  相似文献   

11.
A three-dimensional pore network model for diffusion in porous adsorbent particles was employed in a dynamic adsorption model that simulates the adsorption of a solute in porous particles packed in a chromatographic column. The solution of the combined model yielded the dynamic profiles of the pore diffusion coefficient of beta-galactosidase along the radius of porous ion-exchange particles and along the length of the column as the loading of the adsorbate molecules on the surface of the pores occurred, and, the dynamic adsorptive capacity of the chromatographic column as a function of the design and operational parameters of the chromatographic system. The pore size distribution of the porous adsorbent particles and the chemistry of the adsorption sites were unchanged in the simulations. It was found that for a given column length the dynamic profiles of the pore diffusion coefficient were influenced by: (i) the superficial fluid velocity in the column, (ii) the diameter of the adsorbent particles and (iii) the pore connectivity of the porous structure of the adsorbent particles. The effect of the magnitude of the pore connectivity on the dynamic profiles of the pore diffusion coefficient increased as the diameter of the adsorbent particles and the superficial fluid velocity in the column increased. The dynamic adsorptive capacity of the column increased as: (a) the particle diameter and the superficial fluid velocity in the column decreased, and (b) the column length and the pore connectivity increased. In preparative chromatography, it is desirable to obtain high throughputs within acceptable pressure gradients, and this may require the employment of larger diameter adsorbent particles. In such a case, longer column lengths satisfying acceptable pressure gradients with adsorbent particles having higher pore connectivity values could provide high dynamic adsorptive capacities. An alternative chromatographic system could be comprised of a long column packed with large particles which have fractal pores (fractal particles) that have high pore connectivities and which allow high intraparticle diffusional and convective flow mass transfer rates providing high throughputs and high dynamic adsorptive capacities. If large scale monoliths could be made to be reproducible and operationally stable, they could also offer an alternative mode of operation that could provide high throughputs and high dynamic adsorptive capacities.  相似文献   

12.
Simulation based synthesis and design of adsorptive enrichment of CO from tail gas having 51?% CO are presented. The adsorption breakthrough curve simulation using this feed gas composition, helped to provide a starting guess of the adsorption step duration in a pressure-swing adsorption cycle for meeting the purity and recovery targets. Use of smaller bed dimensions facilitated the simulation of many cycles. These simulations helped to decide the operating pressure range, operating temperature, constituent steps of the cycle, their sequence, direction of pressurization of the bed, number of beds in the cycle and the composition of the streams to be used for pressurization and/or rinse and/or purge steps. Only an optimally designed pressure-vacuum-swing adsorption cycle achieves the stiff separation targets of getting an extract having 80?% pure CO at 80?% recovery in a single-stage with an adsorbent that uses physical adsorption and offers CO/CH4 sorption selectivity of just 2.44. Additional simulations are done wherein the bed sizes and velocities are increased to predict the performance of a large-scale unit. These require deciding only the durations of the steps that are finalized from the small-scale unit simulations. These durations were kept fixed and the bed dimensions were varied till the separation targets are obtained for the particular feed rate. The scale-up criteria was matching residence times in the bed. A strategy for treating a feed gas having only 30?% CO is also discussed and a novel concept of cascaded PSA is evaluated using simulations. Some heuristics are evolved from the studies.  相似文献   

13.
The importance of cooperation of heterogeneous catalysis with surface science is stressed for simultaneous adsorptive and catalytic measurements. Inverse gas chromatography and reversed-flow gas chromatography offer a suitable research ground for such collaboration. After a short introduction, adsorption physicochemical quantities of heterogeneous catalysts with typical recent results, chemical kinetic properties and surface energy of catalysts are described, stressing the important aspect of time-resolved chromatography, due to the heterogeneity of the solid surface of catalysts. Adsorption energies, local monolayer capacities, local isotherms and energy distribution functions are extensively described. Also, lateral molecular interactions, surface diffusion and adsorption rates on heterogeneous catalysts are described.  相似文献   

14.
Tanja Djekic 《Adsorption》2007,13(3-4):231-237
The scope of this work is to determine the effective intraparticle diffusion coefficient of CoCl2 over mesoporous functionalized silica. Silica is selected as a carrier of the functionalized groups for its rigid structure which excludes troublesome swelling, often found in polymeric adsorbents. 2-(2-pyridyl)ethyl-functionalized silica is selected as a promising affinity adsorbent for the reversible adsorption of CoCl2. The adsorption kinetics is investigated with the Zero Length Column (ZLC) method. Initially, experiments were performed at different flow rates to eliminate the effect of external mass transfer. The effect of pore size (60 Å and 90 Å), particle size (40?10?6 m–1000?10?6 m) and initial CoCl2 concentration (1 mol/m3–2.0 mol/m3) on the mass transfer was investigated. A model was developed to determine the pore diffusion coefficient of CoCl2 by fitting the experimental data to the model. The pore diffusion coefficients determined for two different pore sizes of silica are D p (60 Å) =1.95?10?10 [m2/s] and D p (90 Å) =5.8?10?10 [m2/s]. The particle size and the initial CoCl2 concentration do not have an influence on the value of diffusion coefficient. However, particle size has an influence on the diffusion time constant. In comparison with polymer adsorbents, silica based adsorbents have higher values of diffusion coefficients, as well as a more uniform and stable pore structure.  相似文献   

15.
利用自行设计的自约束渗透装置,采用热导检测器在线跟踪穿透实验过程中CO2或He的渗透信号,在40℃条件下,对比研究了CO2和He在阳泉煤CH4饱和基质煤柱(φ6×13mm)中的渗透行为,讨论了煤对气体的吸附或吸取作用及孔隙气压对渗透率的影响.研究表明,有别于煤对He的作用,在CO2和CH4交替渗透时,不同的CH4吹扫时...  相似文献   

16.
A simulation model of a high-capacity methane adsorptive storage system   总被引:5,自引:0,他引:5  
A two-dimensional model is developed to describe the hydrodynamics, heat transfer and adsorption phenomena associated with the adsorptive storage of natural gas (NG) in cylindrical reservoirs. Intraparticle and film resistances to both heat and mass transfer are neglected. In the momentum equation, Ergun's law is considered locally valid and is extended to two dimensions. These assumptions are fully justified in the paper. Numerical results are presented concerning the pressurization and blowdown of an ultra-lightweight 50 litre cylinder, commercially available for the storage of compressed NG, if it were filled with an activated carbon having a good adsorptive storage capacity. A simple formula is also proposed to predict the filling times for fast charges. The predicted temperature changes in the packed-bed are in good agreement with those reported in the literature for an experimental charge/discharge.  相似文献   

17.
Summary The new Technique of reversed-flow gas chromatography was used to study the possible interactions between the two components of salt-modified adsorbents. The inert volatile solutes weren-hexane and benzene. Partition ratios of these solutes on the modified adsorbents, at various temperatures, were measured, followed by the determination of the differential enthalpies of adsorption. The plots of these enthalpies versus mole fraction of the modifier show a minimum for benzene and a maximum forn-hexane. These are taken as indications of an interaction between the components of the modified adsorbent.  相似文献   

18.
《Chemical physics》2005,318(3):171-179
In this paper, we investigate the dependence of thermal diffusion factor and thermal conductivity to the temperature, density and mole fraction in Lennard–Jones binary mixtures of isotopes, noble gases and SF6–noble gases by non-equilibrium molecular dynamics simulations.The results for the isotopic mixtures indicated that the density has a crucial effect on the dependence of thermal diffusion factor on the temperature. For isotope system at low density, thermal diffusion factor increased with temperature then remains constant at higher temperatures and the slope of thermal diffusion factor vs. temperature is positive while at higher density, thermal diffusion factor decreased with temperature and then fluctuate. For noble gas mixtures, thermal diffusion factor reduces with increasing of temperature and remain constant at high temperatures. For SF6–Ar system, thermal diffusion factor has a negative slope and reduced with increasing of temperature, but remain nearly constant at high temperatures. For Xe–SF6 thermal diffusion factor changed sign and the slope of thermal diffusion factor vs. temperature was negative. The results also show that thermal conductivity increases with temperature for all systems.The dependence of thermal diffusion factor to mole fraction of heavier component also investigated. The inverse of thermal diffusion factor versus mole fraction of heavier component is linear for isotope mixtures at thermodynamic conditions: (a) Low temperature, large mass ratio and all densities. (b) High temperature, large mass ratio and low densities. For Ne–Kr mixture, the inverse of thermal diffusion factor shows a linear dependence to the mole fraction of heavier component in moderate temperatures and all densities. For SF6–Ar and Xe–SF6 mixtures, the inverse of thermal diffusion factor has linear behaviour at moderate temperatures and low density and high temperature and low density, respectively.  相似文献   

19.
Interactions of Bovin Serum Albumin and Hemoglobin with an hydroxyapatite gel (HA-Ultrogel, Sepracor), have been studied separately in batch experiments. The adsorption isotherms are of the Langmuir type and can be used directly to scale column operations.For adsorption of hemoglobin alone, in column at pH 6.8 (equal to its isoelectric point) we notice that a classical intraparticle transfer model, based on a constant effective diffusion coefficient represents perfectly the symmetrical breakthrough curve. For acid pH values (pH 5.8), Langmuir isotherms of BSA and hemoglobin adsorptions showed a strong curvature, sign of a quite irreversible adsorption and breakthrough curves obtained under these conditions, exhibit a high dissymmetrical shape for both proteins. In that case, a model of diffusion based on the adsorption on two types of independent sites, with two intraparticle transfer coefficients, gives a good representation of the breakthrough for adsorption of both proteins separately.Binary mixtures of these components were prepared and injected in columns packed with the same support. Competitive Langmuir equation, based on the results obtained in monocomponent batch experiments, give a very good fit to our system. The intraparticle transfer in that case seems to be facilitated, and one effective coefficient alone is enough to predict the breakthrough curves obtained. This behaviour may be the result of an increase of the solution ionic strength, and of the smaller irreversibility feature of the adsorption when proteins are in competition.  相似文献   

20.
采用SXRD,HRTEM,FTIR,SEM和氮气吸附等测试手段对膜结构、形貌、孔径及其分布进行了表征.SXRD和HRTEM结果显示,所制备的膜具有短程有序结构.SEM分析发现膜表面完整.气体渗透实验表明,担载膜具有一定的气体选择性,在0.1MPa下对H2/N2和CH4/N2的分离因子分别为2.25和1.56,气体透过膜孔的扩散由努森机制所控制.等温氮气吸附实验显示,经500℃热处理后氧化硅膜的最可几孔径小于3.34nm,非担载膜的比表面积为919.8m2/g,孔容为0.43mL/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号