首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A general continuous-state branching processes in random environment (CBRE-process) is defined as the strong solution of a stochastic integral equation. The environment is determined by a Lévy process with no jump less than \(-1\). We give characterizations of the quenched and annealed transition semigroups of the process in terms of a backward stochastic integral equation driven by another Lévy process determined by the environment. The process hits zero with strictly positive probability if and only if its branching mechanism satisfies Grey’s condition. In that case, a characterization of the extinction probability is given using a random differential equation with blowup terminal condition. The strong Feller property of the CBRE-process is established by a coupling method. We also prove a necessary and sufficient condition for the ergodicity of the subcritical CBRE-process with immigration.  相似文献   

2.
In this paper, we introduce branching processes in a Lévy random environment. In order to define this class of processes, we study a particular class of non-negative stochastic differential equations driven by a white noise and Poisson random measures which are mutually independent. Following similar techniques as in Dawson and Li (Ann. Probab. 40:813–857, 2012) and Li and Pu (Electron. Commun. Probab. 17(33):1–13, 2012), we obtain existence and uniqueness of strong local solutions of such stochastic equations. We use the latter result to construct continuous state branching processes with immigration and competition in a Lévy random environment as a strong solution of a stochastic differential equation. We also study the long term behaviour of two interesting examples: the case with no immigration and no competition and the case with linear growth and logistic competition.  相似文献   

3.

A hyperfinite Lévy process is an infinitesimal random walk (in the sense of nonstandard analysis) which with probability one is finite for all finite times. We develop the basic theory for hyperfinite Lévy processes and find a characterization in terms of transition probabilities. The standard part of a hyperfinite Lévy process is a (standard) Lévy process, and we show that given a generating triplet (γ, C, μ) for standard Lévy processes, we can construct hyperfinite Lévy processes whose standard parts correspond to this triplet. Hence all Lévy laws can be obtained from hyperfinite Lévy processes. The paper ends with a brief look at Malliavin calculus for hyperfinite Lévy processes including a version of the Clark-Haussmann-Ocone formula.  相似文献   

4.
In this paper, we study quasi-symmetric random walks and Lévy processes, a property first introduced by C.J. Stone, discuss the -invariant Radon measures for random walks and Lévy processes, and formulate some nice ratio limit theorems which are closely related to -invariant Radon measures. Mathematics Subject Classifications (2000) 60G51, 60G50.Research supported in part by NSFC 10271109.  相似文献   

5.
Given a Lévy process \(\xi \), we find necessary and sufficient conditions for almost sure finiteness of the perpetual integral \(\int _0^\infty f(\xi _s)\hbox {d}s\), where \(f\) is a positive locally integrable function. If \(\mu =\mathbb {E}[\xi _1]\in (0,\infty )\) and \(\xi \) has local times we prove the 0–1 law
$$\begin{aligned} \mathbb {P}\Big (\int _0^\infty f(\xi _s)\,\hbox {d}s<\infty \Big )\in \{0,1\} \end{aligned}$$
with the exact characterization
$$\begin{aligned} \mathbb {P}\Big (\int _0^\infty f(\xi _s)\,\hbox {d}s<\infty \Big )=0\qquad \Longleftrightarrow \qquad \int ^\infty f(x)\,\hbox {d}x=\infty . \end{aligned}$$
The proof uses spatially stationary Lévy processes, local time calculations, Jeulin’s lemma and the Hewitt–Savage 0–1 law.
  相似文献   

6.
We prove that the definitions of the Kato class through the semigroup and through the resolvent of the Lévy process in \(\mathbb {R}^{d}\) coincide if and only if 0 is not regular for {0}. If 0 is regular for {0} then we describe both classes in detail. We also give an analytic reformulation of these results by means of the characteristic (Lévy-Khintchine) exponent of the process. The result applies to the time-dependent (non-autonomous) Kato class. As one of the consequences we obtain a simultaneous time-space smallness condition equivalent to the Kato class condition given by the semigroup.  相似文献   

7.
8.
In this paper we prove Harnack inequality for nonnegative functions which are harmonic with respect to random walks in ℝ d . We give several examples when the scale invariant Harnack inequality does not hold. For any α ∈ (0,2) we also prove the Harnack inequality for nonnegative harmonic functions with respect to a symmetric Lévy process in ℝ d with a Lévy density given by $c|x|^{-d-\alpha}1_{\{|x|\leq 1\}}+j(|x|)1_{\{|x|>1\}}$c|x|^{-d-\alpha}1_{\{|x|\leq 1\}}+j(|x|)1_{\{|x|>1\}}, where 0 ≤ j(r) ≤ cr  − d − α , ∀ r > 1, for some constant c. Finally, we establish the Harnack inequality for nonnegative harmonic functions with respect to a subordinate Brownian motion with subordinator with Laplace exponent ϕ(λ) = λ α/2ℓ(λ), λ > 0, where ℓ is a slowly varying function at infinity and α ∈ (0,2).  相似文献   

9.
Doklady Mathematics - For some classes of Lévy processes, the notion of reflection from an interval boundary is introduced. It is shown that trajectories of a reflecting process define random...  相似文献   

10.
Various characterizations for fractional Lévy processes to be of finite variation are obtained, one of which is in terms of the characteristic triplet of the driving Lévy process, while others are in terms of differentiability properties of the sample paths. A zero-one law and a formula for the expected total variation are also given.  相似文献   

11.
12.
We introduce a new coding scheme for general real-valued Lévy processes and control its performance with respect to L p [0,1]-norm distortion under different complexity constraints. We also establish lower bounds that prove the optimality of our coding scheme in many cases.   相似文献   

13.
For an arbitrary Lévy process X which is not a compound Poisson process, we are interested in its occupation times. We use a quite novel and useful approach to derive formulas for the Laplace transform of the joint distribution of X and its occupation times. Our formulas are compact, and more importantly, the forms of the formulas clearly demonstrate the essential quantities for the calculation of occupation times of X. It is believed that our results are important not only for the study of stochastic processes, but also for financial applications.  相似文献   

14.
B. Grigelionis 《Acta Appl Math》2007,96(1-3):233-246
We discuss criteria for the selfdecomposability of multivariate Lévy processes. We consider in detail Thorin subordinated multivariate Gaussian Lévy processes. Partially on the basis of the author’s recent results (MII preprint No. 2004-33, 2004), in this paper, we consider the properties of the Pólya subordinated multivariate Gaussian Lévy processes. We define, as a special class, the multivariate generalized z-processes. The one-dimensional case was investigated in (Grigelionis, B.: Liet. Mat. Rink. 41(3), 303–309, 2001).  相似文献   

15.
A refracted Lévy process is a Lévy process whose dynamics change by subtracting off a fixed linear drift (of suitable size) whenever the aggregate process is above a pre-specified level. More precisely, whenever it exists, a refracted Lévy process is described by the unique strong solution to the stochastic differential equation $$\begin{aligned} {\mathrm{d}}U_t=-\delta \mathbf 1 _{\{U_t>b\}}{\mathrm{d}}t +{\mathrm{d}}X_t,\quad t\ge 0 \end{aligned}$$ where \(X=(X_t, t\ge 0)\) is a Lévy process with law \(\mathbb{P }\) and \(b,\delta \in \mathbb{R }\) such that the resulting process \(U\) may visit the half line \((b,\infty )\) with positive probability. In this paper, we consider the case that \(X\) is spectrally negative and establish a number of identities for the following functionals $$\begin{aligned} \int \limits _0^\infty \mathbf 1 _{\{U_t where \(\kappa ^+_c=\inf \{t\ge 0: U_t> c\}\) and \(\kappa ^-_a=\inf \{t\ge 0: U_t< a\}\) for \(a . Our identities extend recent results of Landriault et al. (Stoch Process Appl 121:2629–2641, 2011) and bear relevance to Parisian-type financial instruments and insurance scenarios.  相似文献   

16.
Abstract

In this paper, the asymptotic behavior of solutions for a nonlinear Marcus stochastic differential equation with multiplicative two-sided Lévy noise is studied. We plan to consider this equation as a random dynamical system. Thus, we have to interpret a Lévy noise as a two-sided metric dynamical system. For that, we have to introduce some fundamental properties of such a noise. So far most studies have only discussed two-sided Lévy processes which are defined by combining two-independent Lévy processes. In this paper, we use another definition of two-sided Lévy process by expanding the probability space. Having this metric dynamical system we will show that the Marcus stochastic differential equation with a particular drift coefficient and multiplicative noise generates a random dynamical system which has a random attractor.  相似文献   

17.
The class I(c) of stationary distributions of periodic Ornstein–Uhlenbeck processes with parameter c driven by Lévy processes is analyzed. A characterization of I(c) analogous to a well-known characterization of the selfdecomposable distributions is given. The relations between I(c) for varying values of c and the relations with the class of selfdecomposable distributions and with the nested classes Lm are discussed.  相似文献   

18.
We determine conditions under which a subordinated random walk of the form tends to infinity almost surely (a.s), or tends to infinity a.s., where {N(n)} is a (not necessarily integer valued) renewal process, denotes the integer part of N(n), and Sn is a random walk independent of {N(n)}. Thus we obtain versions of the Alternatives, for drift to infinity, or for divergence to infinity in the strong law, for . A complication is that is not, in general, itself, a random walk. We can apply the results, for example, to the case when N(n)= n, > 0, giving conditions for lim , a.s., and lim sup , a.s., etc. For some but not all of our results, N(1) is assumed to have finite expectation. Examples show that this is necessary for the kind of behaviour we consider. The results are also shown to hold in the same degree of generality for subordinated Lévy processes.  相似文献   

19.
By using lower bound conditions of the Lévy measure, derivative formulae and Harnack inequalities are derived for linear stochastic differential equations driven by Lévy processes. As applications, explicit gradient estimates and heat kernel inequalities are presented. As byproduct, a new Girsanov theorem for Lévy processes is derived.  相似文献   

20.
In this paper, we study reflected generalized backward doubly stochastic differential equations driven by Teugels martingales associated with Lévy process (RGBDSDELs in short) with one continuous barrier. Under uniformly Lipschitz coefficients, we prove an existence and uniqueness result by means of the penalization method and the fixed-point theorem. As an application, this study allows us to give a probabilistic representation for the solutions to a class of reflected stochastic partial differential integral equations (SPDIEs in short) with a nonlinear Neumann boundary condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号