首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simple autonomous dynamical models of velocity gradients are found to be useful in understanding the essential physics of non-linear turbulent processes. Such models can also be employed as closure models for the Lagrangian PDF methods of turbulence computations. The pressure Hessian and the viscous processes incumbent in the exact velocity gradient evolution equation are non-local in nature. Several models have been proposed for these processes. In this work, we focus specifically on two models meant for the incumbent viscous process: the linear Lagrangian diffusion model (LLDM) and the recent fluid deformation closure model (RFDM). Performance of both the models have indeed been examined earlier, but most evaluations have been restricted to statistical stationary flow fields. In this work, we subject these models to further scrutiny. Our evaluation procedure (i) uses direct numerical simulation data of decaying isotropic (non-stationary) turbulence, (ii) follows identified fluid particles (the so-called Lagrangian evolution), (iii) uses both compressible and nearly incompressible flow fields. In nearly incompressible regime, the RFD model is found to be satisfactory, while the LLDM model overestimates viscous effects at late times. In the compressible regime, both the models show inadequacies. For compressible flows, we propose an alternative modelling strategy which shows improvement over both LLD and RFD models.  相似文献   

2.
A new computational approach is developed for the analysis of vortex-dominated flow fields around highly swept wings at high angles of attack. In this approach an inviscid Euler technology is coupled with viscous models, similar to inviscid/boundary layer coupling. The viscous nature of the vortex core is represented by an algebraic model derived from the Navier–Stokes equations. The approach also accounts for the effects of the viscous shear layer near a wing surface through a modified surface boundary condition. The inviscid/viscous coupling consistently provides improved predictions of leading edge separation, vortex bursting and secondary vortex formation at relatively low computational cost. Results for several cases are compared with wind tunnel tests and other Euler and Navier-Stokes solutions.  相似文献   

3.
On the basis of the work [P.‐H. Maire, R. Abgrall, J. Breil, J. Ovadia, SIAM J. Sci. Comput. 29 (2007), 1781–1824], we present an entropy fixed cell‐centered Lagrangian scheme for solving the Euler equations of compressible gas dynamics. The scheme uses the fully Lagrangian form of the gas dynamics equations, in which the primary variables are cell‐centered. And using the nodal solver, we obtain the nodal viscous‐velocity, viscous‐pressures, antidissipation velocity, and antidissipation pressures of each node. The final nodal velocity is computed as a weighted sum of viscous‐velocity and antidissipation velocity, so do nodal pressures, whereas these weights are calculated through the total entropy conservation for isentropic flows. Consequently, the constructed scheme is conservative in mass, momentum, and energy; preserves entropy for isentropic flows, and satisfies a local entropy inequality for nonisentropic flows. One‐ and two‐dimensional numerical examples are presented to demonstrate theoretical analysis and performance of the scheme in terms of accuracy and robustness.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Two approaches to the kinematic structuring of constitutive models for highly elastic flows of polymer melts have been examined systematically, assuming either: (1) additivity of elastic and viscous velocity gradients or (2) multiplicability of elastic and viscous deformation gradients. A series of constitutive models were compared, with differing kinematic structure but the same linear responses in elastic and viscous limits. They were solved numerically and their predictions compared, and they were also compared to those of the Giesekus model. Several variants, previously proposed as separate models, are shown to be equivalent and qualitatively in agreement with experiment, and therefore a sound basis for construction of models. But the assignment of viscous spin is critical: if it is assumed equal to the total spin with approach (1), or equal to zero with approach (2), then unphysical viscoelastic behaviour is predicted.  相似文献   

5.
介绍了QDS方法Euler求解器的基本思路,并从以下三个方面做了改进:(1)在统计网格宏观量时,考虑了相邻网格内流动量的梯度,发展成了二阶格式,使得在QDS算法中的粒子重构和网格宏观量统计都达到二阶格式,由此为充分发展的二阶格式;(2)在进行网格宏观量统计时,提出将按网格进行宏观量统计修改为按粒子位置更新网格宏观量,减少了对粒子进行遍历的次数,大大提高了计算效率;(3)在改进后的二阶格式中引进了斜率限制器,比较了不同斜率限制器的效果。  相似文献   

6.
The finite element method is employed to investigate time-dependent liquid metal flows with free convection, free surfaces and Marangoni effects. The liquid circulates in a two-dimensional shallow trough with differentially heated vertical walls. The spatial formulation incorporates mixed Lagrangian approximations to the velocity, pressure, temperature and free surface position. The time integration is performed with the backward Euler and trapezoid rule methods with step size control. The Galerkin method is used to reduce the problem to a set of non-linear equations which are solved with the Newton–Raphson method. Calculations are performed for conditions relevant to the electron beam vaporization of refractory metals. The Prandtl number is 0·015 and Grashof number are in the transition range between laminar and turbulent flow. The results reveal the effects of flow intensity, surface tension gradients, mesh refinement and time integration strategy.  相似文献   

7.
We attempt to improve accuracy in the high‐wavenumber region in DNS of incompressible wall turbulence such as found in fully developed turbulent channel flow. In particular, it is shown that the improvement of accuracy of viscous terms in the Navier–Stokes equations leads to the improvement of accuracy of higher‐order statistics and various spectra. It is emphasized that increase in required computational cost will not be crucial when incompressible flow is simulated, because the introduction of a higher‐order scheme into the viscous terms does not increase computational cost for solving the Poisson equation. We introduced fourth‐order and eighth‐order central compact schemes for discretizing the viscous terms in DNS of a fully developed turbulent channel flow. The results are compared with those using second‐order and fourth‐order central‐difference schemes applied to the viscous terms and those obtained by the spectral method. The results show that accuracy improvement of the viscous terms improve accuracy of higher‐order statistics (i.e., skewness and flatness factors of streamwise velocity fluctuation) and various spectra of velocity and pressure fluctuations in the high‐wavenumber region. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Variation in flow characteristics triggered through the fire-wind interface can potentially damage the buildings during bushfires. Fire-wind enhancement which is referred to as the increase of wind velocity, caused by the fire-wind interaction, is one of the destructive phenomena in this regard. In spite of the significance, the underlying mechanism contributing to this phenomenon is still not well understood. This study employs computational fluid dynamic (CFD) simulation to fundamentally investigate the effects of free-stream wind velocity on fire-wind enhancement through analyzing the momentum and buoyancy of fluid. Fire-wind interaction is shown to cause the generation of fire-induced longitudinal negative pressure gradient which results in fire-induced pressure and viscous forces in longitudinal direction. These forces are further found as the prime reason for the distortion of the wind velocity profile. A module is implemented to the FireFOAM solver to calculate and extract these forces quantitatively. The results reveal that under a constant fire intensity, the level of distortion and/or enhancement in the wind velocity profile comparatively reduces with the increase of free-stream wind velocity. A new non-dimensional group (modified Euler number) is introduced to take into account dominant fire-induced forces causing fire-wind enhancement. Richardson number and the modified Euler number are employed to determine the influence of free-stream wind velocity and longitudinal distance from the fire source on wind velocity enhancement. Large-eddy simulation (LES) results indicate that while the level of enhancement generally depends on both Richardson and the modified Euler number, the location of the maximum level of enhancement along the plume centreline coincides with the maximum value of modified Euler number under a constant free-stream wind velocity scenario.  相似文献   

9.
. We study the asymptotic behavior as time goes to infinity of solutions to the initial‐boundary‐value problem on the half space for a one‐dimensional model system for the isentropic flow of a compressible viscous gas, the so‐called p‐system with viscosity. As boundary conditions, we prescribe the constant state at infinity and require that the velocity be zero at the boundary . When the velocity at infinity is negative and satisfies a condition on the magnitude, we prove that if the initial data are suitably close to those for the corresponding outgoing viscous shock profile, which is suitably far from the boundary, then a unique solution exists globally in time and tends toward the properly shifted viscous shock profile as the time goes to infinity. The proof is given by an elementary energy method. (Accepted March 2, 1998)  相似文献   

10.
Unsteady Euler and adjoint Euler solvers have been combined in order to aid in the design of shock mitigation devices. The flowfield is integrated forward in time and stored. The adjoint is then integrated going backwards in time, restoring and interpolating the saved Euler solution to the current point in time. The gradient is obtained from a surface integral formulation during the adjoint run. Comparisons of adjoint‐based and finite‐differencing gradients for different verification cases show less than 10% deviation. The results obtained indicate that this is a very cost‐effective way to obtain the gradients of an objective function with respect to surface design changes. Moreover, as the sensitivity information is determined over a complete surface, the procedure provides considerable insight, and can efficiently facilitate the design of shock mitigation devices such as architecturally appealing blast walls. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, a hybrid scheme, Fluid–Fluid–Elastic Structure (FFES) model was developed in the time domain to address the wave breaking impact on the structure. The model is developed based on the partitioned approach with different governing equations that describe various regions of the model domain. The fluid–fluid model denotes that two different fluid models were used to describe fluid in the actual physical domain. The method is a physics-based approximation to reduce the computational time, i.e. in the far-field inviscid fluid (fully nonlinear potential flow theory model), and near to the structure, viscous fluid (Navier Stokes model) is used. The coupled model then interacts with the elastic structure (based on Euler–Bernoulli beam theory). The system of equations is strongly coupled both in space and time. The Fluid–Fluid coupling uses an implicit predictor–corrector scheme, and the fluid–structure coupling works based on an iterative scheme. This approach makes the method more robust and for future extension. Three different possibilities for introducing the coupling was identified and implemented. The model was validated against results from the analytical solution and literature. The method proposed is a reliable, robust, and efficient alternative for simulating fluid–structure interaction problems.  相似文献   

12.
In this study, a high-order accurate numerical method is applied and examined for the simulation of the inviscid/viscous cavitating flows by solving the preconditioned multiphase Euler/Navier-Stokes equations on triangle elements. The formulation used here is based on the homogeneous equilibrium model considering the continuity and momentum equations together with the transport equation for the vapor phase with applying appropriate mass transfer terms for calculating the evaporation/condensation of the liquid/vapor phase. The spatial derivative terms in the resulting system of equations are discretized by the nodal discontinuous Galerkin method (NDGM) and an implicit dual-time stepping method is used for the time integration. An artificial viscosity approach is implemented and assessed for capturing the steep discontinuities in the interface between the two phases. The accuracy and robustness of the proposed method in solving the preconditioned multiphase Euler/Navier-Stokes equations are examined by the simulation of different two-dimensional and axisymmetric cavitating flows. A sensitivity study is also performed to examine the effects of different numerical parameters on the accuracy and performance of the solution of the NDGM. Indications are that the solution methodology proposed and applied here is based on the NDGM with the implicit dual-time stepping method and the artificial viscosity approach is accurate and robust for the simulation of the inviscid and viscous cavitating flows.  相似文献   

13.
In this study, the multiple holdup solutions problem for stratified laminar-laminar flow in a channel is investigated. A stationary but developing monodimensional flow model is adopted here to follow the evolution of the holdup value from a non-equilibrium inlet condition to the final downstream and fully developed solution. A first order Ordinary Differential Equation (ODE) solver is used to perform this analysis under the assumption that the flow remains supercritical all along the pipe. The possibility of having a hydraulic shock during the longitudinal evolution of the system is investigated too. A second order ODE model is then proposed to handle situations with shocks, by including the effects of the longitudinal viscous stress diffusion when large interface level gradients occur. The results are also discussed regarding the approach of minimization of a potential function, showing a good consistency between the two methods.  相似文献   

14.
A volume-filtered Euler–Lagrange large eddy simulation methodology is used to predict the physics of turbulent liquid–solid slurry flow through a horizontal periodic pipe. A dynamic Smagorinsky model based on Lagrangian averaging is employed to account for the sub-filter scale effects in the liquid phase. A fully conservative immersed boundary method is used to account for the pipe geometry on a uniform cartesian grid. The liquid and solid phases are coupled through volume fraction and momentum exchange terms. Particle–particle and particle–wall collisions are modeled using a soft-sphere approach. Three simulations are performed by varying the superficial liquid velocity to be consistent with the experimental data by Dahl et al. (2003). Depending on the liquid flow rate, a particle bed can form and develop different patterns, which are discussed in light of regime diagrams proposed in the literature. The fluctuation in the height of the liquid-bed interface is characterized to understand the space and time evolution of these patterns. Statistics of engineering interest such as mean velocity, mean concentration, and mean streamwise pressure gradient driving the flow are extracted from the numerical simulations and presented. Sand hold-up calculated from the simulation results suggest that this computational strategy is capable of predicting critical deposition velocity.  相似文献   

15.
Buoyant flow is analysed for a vertical fluid saturated porous layer bounded by an isothermal plane and an isoflux plane in the case of a fully developed flow with a parallel velocity field. The effects of viscous dissipation and pressure work are taken into account in the framework of the Oberbeck–Boussinesq approximation scheme and of the Darcy flow model. Momentum and energy balances are combined in a dimensionless nonlinear ordinary differential equation solved numerically by a Runge–Kutta method. Both cases of upward pressure force (upward driven flows) and of downward pressure force (downward driven flows) are examined. The thermal behaviour for upward driven flows and downward driven flows is quite different. For upward driven flows, the combined effects of viscous dissipation and pressure work may produce a net cooling of the fluid even in the case of a positive heat input from the isoflux wall. For downward driven flows, viscous dissipation and pressure work yield a net heating of the fluid. A general reflection on the roles played by the effects of viscous dissipation and pressure work with respect to the Oberbeck–Boussinesq approximation is proposed.  相似文献   

16.
Layered Thermohaline Convection in Hypersaline Geothermal Systems   总被引:3,自引:0,他引:3  
Thermohaline convection occurs in hypersaline geothermal systems due to thermal and salinity effects on liquid density. Because of its importance in oceanography, thermohaline convection in viscous liquids has received more attention than thermohaline convection in porous media. The fingered and layered convection patterns observed in viscous liquid thermohaline convection have been hypothesized to occur also in porous media. However, the extension of convective dynamics from viscous liquid systems to porous media systems is complicated by the presence of the solid matrix in porous media. The solid grains cause thermal retardation, hydrodynamic dispersion, and permeability effects. We present simulations of thermohaline convection in model systems based on the Salton Sea Geothermal System, California, that serve to point out the general dynamics of porous media thermohaline convection in the diffusive regime, and the effects of porosity and permeability, in particular. We use the TOUGH2 simulator with residual formulation and fully coupled solution technique for solving the strongly coupled equations governing thermohaline convection in porous media. We incorporate a model for brine density that takes into account the effects of NaCl and CaCl2. Simulations show that in forced convection, the increased pore velocity and thermal retardation in low-porosity regions enhances brine transport relative to heat transport. In thermohaline convection, the heat and brine transport are strongly coupled and enhanced transport of brine over heat cannot occur because buoyancy caused by heat and brine together drive the flow. Random permeability heterogeneity has a limited effect if the scale of flow is much larger than the scale of permeability heterogeneity. For the system studied here, layered thermohaline convection persists for more than one million years for a variety of initial conditions. Our simulations suggest that layered thermohaline convection is possible in hypersaline geothermal systems provided the vertical permeability is smaller than the horizontal permeability, as is likely in sedimentary basins such as the Salton Trough. Layered thermohaline convection can explain many of the observations made at the Salton Sea Geothermal System over the years.  相似文献   

17.
Wave propagation in gaseous small-scale channel flows   总被引:1,自引:0,他引:1  
The propagation and attenuation of an initial shock wave through a mm-scale channel of circular cross-section over lengths up to 2,000 diameters is examined as a model problem for the scaling of viscous effects in compressible flows. Experimental wave velocity measurements and pressure profiles are compared with existing data and theoretical predictions for shock attenuation at large scales and low pressures. Significantly more attenuation is observed than predicted based on streamtube divergence. Simulations of the experiment show that viscous effects need to be included, and the boundary layer behavior is important. A numerical model including boundary layer and channel entrance effects reproduces the wave front velocity measurements, provided a boundary layer transition model is included. A significant late-time pressure rise is observed in experiments and in the simulations.  相似文献   

18.
This paper presents an efficient numerical method for solving the unsteady Euler equations on stationary rectilinear grids. Boundary conditions on the surface of an airfoil are implemented by using their first-order expansions on the mean chord line. The method is not restricted to flows with small disturbances since there are no restrictions on the mean angle of attack of the airfoil. The mathematical formulation and the numerical implementation of the wall boundary conditions in a fully implicit time-accurate finite-volume Euler scheme are described. Unsteady transonic flows about an oscillating NACA 0012 airfoil are calculated. Computational results compare well with Euler solutions by the full boundary conditions on a body-fitted curvilinear grid and published experimental data. This study establishes the feasibility for computing unsteady fluid-structure interaction problems, where the use of a stationary rectilinear grid offers substantial advantages in saving computer time and program design since it does not require the generation and implementation of time-dependent body-fitted grids.  相似文献   

19.
The two-fluid model is widely used in studying gas–liquid flow inside pipelines because it can qualitatively predict the flow field at low computational cost. However, the two-fluid model becomes ill-posed when the slip velocity exceeds a critical value, and computations can be quite unstable before the flow reaches the ill-posed condition. In this work, computational stability of various convection schemes together with the Euler implicit method for the time derivatives in conjunction with the two-fluid model is analyzed. A pressure correction algorithm for the two-fluid model is carefully implemented to minimize its effect on numerical stability. von Neumann stability analysis shows that the central difference scheme is more accurate and more stable than the 1st-order upwind, 2nd-order upwind, and QUICK schemes. The 2nd-order upwind scheme is much more susceptible to instability than the 1st-order upwind scheme and is inaccurate for short waves. Excellent agreement is obtained between the predicted and computed growth rates of harmonic disturbances. The instability associated with the two-fluid model discretized system of equations is related to but quantitatively different from the instability associated with ill-posedness of the two-fluid model. When the computation becomes unstable due to the ill-posedness, the machine roundoff errors from a selected range of short wavelengths, which scale with the grid size, are amplified rapidly to render the computation of any targeted long wavelength variation useless. For the viscous two-fluid model with wall friction and interfacial drag, a small-amplitude long wavelength disturbance grows due to viscous Kelvin–Helmholtz instability without triggering the grid scale short waves when the system remains well posed. Under such a condition, central difference is found to be the most accurate discretization scheme among those investigated.  相似文献   

20.
The paper deals with the effect of dimensionless non-Newtonian coefficient on the thermal stability of a reactive viscous liquid in steady flow between parallel heated plates. It is assumed that the liquid is symmetrically heated and the flow fully developed. Approximate analytical solution is obtained for the velocity of the flow and the criterion for which this solution is valid is determined. After the velocity distribution is known, the temperature distribution may be calculated. Disappearance of criticality (transition values) are obtained in the following cases: (i) bimolecular (ii) Arrhenius and (iii) sensitized temperature dependence. We have observed that non-linear effect from velocity and temperature fields introduced decaying for the transitional values of the dimensionless central temperature. Other effects of this non-linearity are reported. The results help to enhance understanding of the interplay between Newtonian and non-Newtonian thermal explosions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号