首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Field-effect mobility of electrons as high as 0.1 cm2/(V s) is observed in n-channel thin film transistors fabricated from a solution spin-coated conjugated ladder polymer, poly(benzobisimidazobenzophenanthroline) (BBL), under ambient air conditions. This is the highest electron mobility observed to date in a conjugated polymer semiconductor. Comparative studies of n-channel thin film transistors made from a structurally similar nonladder conjugated polymer BBB gave an electron mobility of 10-6 cm2/(V s). These results demonstrate that electron transport can be as facile as hole transport in conjugated polymer semiconductors and that ladder architecture of a conjugated polymer can substantially enhance charge carrier mobility.  相似文献   

2.
The n-channel behavior has been occasionally reported in the organic field-effect transistors (OFETs) that usually exhibit p-channel transport only. Reconfirmation and further examination of these unusual device performances should deepen the understanding on the electron transport in organic semiconductors. 6,13-bis(triisopropyl-silylethynyl) pentacene (TIPS-pentacene), a widely examined p-channel material as Au is used for source-drain electrodes, has recently been reported to exhibit electron transport when grown from non-polar solvent on divinyltetramethyldisiloxanebis (benzocyclobutene) (BCB) dielectric, spurring the study on this unusual electron transport. This paper describes FET characteristics of solution-grown TIPS-pentacene single crystals on five polymer gate dielectrics including polystyrene (PS), poly(methyl methacrylate) (PMMA), poly(4-vinyl phenol) (PVP), poly(vinyl alcohol) (PVA) and poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE)). In addition to the p-channel behavior, electron transport occurs in the crystals on PMMA, PS, thick PVA (40 nm) and a bilayer dielectric of PMMA on P(VDF-TrFE-CFE), while does not on PVP and thin PVA (2 nm). The two distinct FET characteristics are consistent with the previous reported trap effect of hydroxyl groups (in PVP and PVA) and reduced injection barrier by Na+ ions (as impurity in PVA). The highest electron mobility of 0.48 cm2 V-1 s-1 has been achieved in the crystals on PMMA. Furthermore, the electron transport is greatly attenuated after the crystals are exposed to the vapor of a variety of polar solvents and the attenuated electron transport partially recovers if the crystals are heated, indicating the adverse effect of polar impurities on electron transport. By reconfirming the n-channel behavior in the OFETs based on TIPS-pentacene, this work has implications for the design of n-channel and ambipolar OFETs.  相似文献   

3.
Li ZH  Wong MS  Tao Y  Fukutani H 《Organic letters》2007,9(18):3659-3662
In addition to hole transport, diphenylamino-end-capped oligofluorenylthiophenes can exhibit efficient electron transport, in which the oligothiophene central core acts as an excellent electron-transporting moiety. The highly efficient undoped multilayer OLEDs using OF(2)TTP-NPh and OF(2)QTP-NPh as an electron-transporting emitter exhibited a maximum luminance of 19,800 and 11,800 cd m(-2) with a luminance efficiency up to 5.3 and 1.0 cd A(-1), respectively.  相似文献   

4.
A series of novel wide bandgap small molecules(IFT-ECA, IFT-M, IFT-TH and IFT-IC) based on the A-D-A structure with indenofluorene core, thiophene bridge, and different electron-deficient end-capping groups, were synthesized and used as non-fullerene acceptors in organic solar cells. The influences of end-capping groups on the device performance were studied.The four materials exhibited different physical and chemical properties due to the variation of end-capping groups, which further affect the exciton dissociation, charge transport, morphology of the bulk-heterojunction films and device performance. Among them, IFT-IC-based device delivered the best power conversion efficiency of 7.16% due to proper nano-scale phase separation morphology and high electron mobility, while the devices based on the other acceptors achieved lower device performance(4.14% for IFT-TH, 1% for IFT-ECA and IFT-M). Our results indicate the importance of choosing suitable electron-withdrawing groups to construct high-performance non-fullerene acceptors based on A-D-A motif.  相似文献   

5.
Attaching electron-withdrawing substituent to organic conjugated molecules is considered as an effective method to produce n-type and ambipolar transport materials. In this work, we use density functional theory calculations to investigate the electron and hole transport properties of pentacene (PENT) derivatives after substituent and simulate the angular resolution anisotropic mobility for both electron and hole transport. Our results show that adding electron-withdrawing substituents can lower the energy level of lowest unoccupied molecular orbital (LUMO) and increase electron affinity, which are beneficial to the electron injection and ambient stability of the material. Also the LUMO electronic couplings for electron transport in these pentacene derivatives can achieve up to a hundred meV which promises good electron transport mobility, although adding electron-withdrawing groups will introduce the increase of electron transfer reorganization energy. The final results of our angular resolution anisotropic mobility simulations show that the electron mobility of these pentacene derivatives can get to several cm(2) V(-1) s(-1), but it is important to control the orientation of the organic material relative to the device channel to obtain the highest electron mobility. Our investigation provide detailed information to assist in the design of n-type and ambipolar organic electronic materials with high mobility performance.  相似文献   

6.
Tungsten trixoide/titania (WO3-titania) composite thin films with W/Ti molar ratios of 100/0, 98/2, 96/4, 94/6 92/8 and 90/10 were prepared on fluorine-doped tin oxide conducting glass, and their electrochromic (EC) and photoelectrochromic (PEC) performances were investigated in this study. The composite thin films were synthesized by sol–gel process using peroxotungstic acid and titanium (IV) n-butoxide as the precursors. The surface morphology and composition of the composite thin films were characterized using scanning electron microscope with energy dispersive spectrometer. Electrochemical experiments with in situ spectroscopic measurement were employed to study the EC properties of the composite thin films. It was found that the presence of titania in the WO3 matrix might slightly decreases its EC performance. PEC cells using the composite thin films as the working electrode and a sputtered semitransparent platinum thin film on ITO as the counter electrode were fabricated and their PEC performances were investigated. The device using composite thin film prepared from sol solution with a W/Ti molar ratio of 96/4 exhibited the best PEC performance.  相似文献   

7.
A terthiophene-based quinodimethane, 3',4'-dibutyl-5,5' '-bis(dicyanomethylene)-5,5' '-dihydro-2,2':5',2' '-terthiophene (1) was synthesized and crystallized. Compound 1 has a planar quinoid geometry that is stabilized by dicyanomethylene groups at each end of the molecule. In the crystal each molecule is part of a dimerized face-to-face pi-stack, with intermolecular spacings of 3.47 and 3.63 A, respectively. Cyclic voltammetry showed that 1 could be reversibly reduced and oxidized in methylene chloride solution. Thin film transistors (TFTs) were prepared by vacuum evaporation of 1 onto SiO2(300 nm)/Si substrates, followed by evaporation of Ag source and drain contacts. The doped Si substrate served as the gate electrode. X-ray diffraction and atomic force microscopy indicate the films are polycrystalline, with the long axes of the molecules approximately perpendicular to the substrate. The TFT measurements revealed n-channel conduction in films of 1, with room-temperature electron field effect mobilities as high as 0.005 cm2/Vs. The butyl side chains give 1 appreciable solubility in a range of common solvents, and preliminary TFT results on films cast from chlorobenzene show electron mobility as high as 0.002 cm2/Vs. These results indicate that pi-stacked quinoidal thiophene oligomers are a promising new class of soluble n-channel organic semiconductors.  相似文献   

8.
Nanostructured ultrathin films of linear and dendrimeric cationic sexithiophenes, 6TNL and 6TND, respectively, alternated with anionic polycarbazole precursor, poly(2-( N-carbazolyl) ethyl methacrylate- co-methacrylic acid) or PCEMMA32, were successfully fabricated using the layer-by-layer self-assembly deposition technique. The two electro-optically active oligomers exhibited distinct optical properties and aggregation behavior in solution and films as studied by UV-vis and fluorescence spectroscopy. The stepwise increase of the 6TNL/PCEMMA32 and 6TND/PCEMMA32 layers was confirmed by UV-vis spectroscopy and in situ surface plasmon resonance (SPR) spectroscopy. The intralayer electrochemical polymerization and cross-linking behavior of the carbazole functionalized PCEMMA32 layers were then investigated using cyclic voltammetry (CV) and electrochemical surface plasmon resonance (EC-SPR) spectroscopy. The increase in current with each cycle confirmed intralayer cross-linking followed by the doping-dedoping process within these films. The two types of films differed with respect to dielectric constant and thickness changes before and after electropolymerization, indicating the influence of the oligothiophene layers. This demonstrated for the first time the preparation of highly ordered organic semiconductors alternated with in situ electropolymerizable layers in ultrathin films.  相似文献   

9.
We have investigated the synthesis and ultrathin film forming properties of α,ω‐diamine derivatives. The amphiphiles were synthesized as precursors to the formation of ionene polymers. Two materials were investigated: oligothiophene and azobenzene functional groups. These type of materials are of great interest for the preparation of ultrathin film layers with applications for photochemical regulation of liquid crystal (LC) orientation, optical storage media, and electroluminescent displays. Azobenzene and its derivatives are well known photochemical systems exhibiting the reversible cis‐trans photoisomerization. Conjugated oligothiophene derivatives, exhibit interesting optical and electronic properties for applications such as light emitting diodes (LED)s, Schottky diodes, and thin film field‐effect transistors (TFT). The two amphiphiles behaved very differently as Langmuir monolayers and LB films. Dye aggregation was observed with the azobenzene derivatives compared with the oligothiophenes.  相似文献   

10.
The near-field coupling interactions between surface plasmon modes of neighboring metal nanoparticles (NPs) are investigated in thin films of oligothiophene-linked Au NPs. The oligothiophene linker facilitates near-field coupling between adjacent NPs, and disruption of the conjugation in the oligothiophene by chemical oxidation leads to a decrease in surface plasmon resonance (SPR) coupling between neighboring particles. The SPR coupling between NPs was found to be highly dependent on the dielectric constant of the medium that the films are exposed to, where a higher dielectric medium leads to weaker coupling. The dependence of the SPR coupling on the dielectric constant of the medium is explained using electrodynamic theory.  相似文献   

11.
Highly stable unsymmetrical donor–acceptor oligothiophenes equipped with terminal electron-donating triphenylamine and an electron-withdrawing phenyldicyanovinyl groups have been synthesized. An influence of the length of conjugated oligothiophene π-spacer between the donor and acceptor blocks on solubility, thermal, optical and electrochemical properties of such compounds has been revealed.  相似文献   

12.
窦建民  李大成  高希珂 《高分子科学》2017,35(11):1342-1351
Two copolymers of P1 and P2 comprising benzothiadiazole, 1,4-bis(dodecyloxy)-benzene units were synthesized by Sonogashira coupling polymerization based on ethynyl-linked 1,2,5,6-naphthalenediimide.Their thermal, optical,electrochemical as well as charge transport properties were studied. Bottom-gate top-contact organic field-effect transistors(OFETs) measurements of P1 and P2 thin films showed different charge transport behaviors. P1 displayed pure electron transport behaviors in OFETs with electron mobility up to 10~(-3 )cm~2·V~(-1)·s~(-1), while P2 exhibited hole transport features. The molecular structure analysis revealed that the structure of P1 has the acceptor-linker-acceptor′(A-L-A′) characteristic, and P2 possesses the donor-linker-acceptor(D-L-A) structure feature. The results demonstrate that different molecular structures lead them to have distinct charge transport behaviors. In particular, the first pure electron transport copolymer in OFETs based on 1,2,5,6-naphthalenediimide is achieved.  相似文献   

13.
采用水辅助化学气相沉积法制备了结晶性好的一维带状SnO2. 分别以小粒径锡粉和金修饰的小粒径锡粉作为反应原料制得带宽度不同的带状SnO2, 小粒径锡粉作为反应原料能提高带状SnO2的产率. 将所得SnO2带和SnO2纳米颗粒按不同比例混合配制成胶体, 采用刮涂法制备含不同比例纳米颗粒和纳米带的复合SnO2薄膜并组装染料敏化太阳能电池(DSSCs)来评价带状SnO2的电子输运性能. 组装的太阳能电池表现出与复合纳晶薄膜中一维SnO2带的带宽度和所含比例密切相关的光电性能. 通过强度调制光电流谱的测量确定复合SnO2薄膜的电子传输速率, 并进一步分析一维材料所具有的良好电子传输性能对光电流增加的贡献. 因为一维SnO2带在复合纳晶薄膜中作为电子输运的快速通道可以加快电子的输运速度, 所以以适宜的比例添加具有合适宽度的一维SnO2带可以明显提高太阳能电池的光电性能.  相似文献   

14.
Organic–inorganic poly(phthalazinone ether ketone) (PPEK)/SiO2 hybrid composite thin films were prepared by the dip-coating method on pre-cleaned glass substrates. The covalent bonds between organic and inorganic phases were introduced by an in-situ O-acylation reaction of isocyanatopropyltriethoxysilane (ICPTES) with the borohydride-reduced PPEK forming a polymer bearing triethoxysilyl groups. Theses groups were subsequently hydrolyzed with tetraethoxysilane (TEOS) and allowed to form a network via a sol–gel process. The polymer hybrid composite exhibited good thermal stability and a higher glass transition temperature as compared with the pure resin. Atomic force microscope, water contact angle measurement and scanning electron microscope were used to characterize the polymer hybrid thin films. The tribological experiment showed that the films have very low friction coefficient (about 0.1) and good anti-wear properties, without failure even after sliding for 18,000 s under modest loads. The improved tribological properties of the modified substrate were attributed to good adherence of PPEK/SiO2 hybrid films on the substrate and synergy of both PPEK matrix and silica particles.  相似文献   

15.
A series of new benzothiazole-derived donor–acceptor-based compounds (Comp1–4) were synthesized and characterized with the objective of tuning their multifunctional properties, i.e., charge transport, electronic, and optical. All the proposed structural formulations (Comp1–4) were commensurate using FTIR, 1H NMR, 13C NMR, ESI-mass, UV–vis, and elemental analysis techniques. The effects of the electron-donating group (-CH3) and electron-withdrawing group (-NO2) on the optoelectronic and charge transfer properties were studied. The substituent effect on absorption was calculated at the TD-B3LYP/6-31+G** level in the gas and solvent phases. The effect of solvent polarity on the absorption spectra using various polar and nonpolar solvents, i.e., ethanol, acetone, DMF, and DMSO was investigated. Light was shed on the charge transport in benzothiazole compounds by calculating electron affinity, ionization potential, and reorganization energies. Furthermore, the synthesized compounds were used to prepare thin films on the FTO substrate to evaluate the charge carrier mobility and other related device parameters with the help of I-V characteristic measurements.  相似文献   

16.
Ammonium thiocyanate (NH(4)SCN) is introduced to exchange the long, insulating ligands used in colloidal nanocrystal (NC) synthesis. The short, air-stable, environmentally benign thiocyanate ligand electrostatically stabilizes a variety of semiconductor and metallic NCs in polar solvents, allowing solution-based deposition of NCs into thin-film NC solids. NH(4)SCN is also effective in replacing ligands on NCs after their assembly into the solid state. The spectroscopic properties of this ligand provide unprecedented insight into the chemical and electronic nature of the surface of the NCs. Spectra indicate that the thiocyanate binds to metal sites on the NC surface and is sensitive to atom type and NC surface charge. The short, thiocyanate ligand gives rise to significantly enhanced electronic coupling between NCs as evidenced by large bathochromic shifts in the absorption spectra of CdSe and CdTe NC thin films and by conductivities as high as (2 ± 0.7) × 10(3) Ω(-1) cm(-1) for Au NC thin films deposited from solution. NH(4)SCN treatment of PbTe NC films increases the conductivity by 10(13), allowing the first Hall measurements of nonsintered NC solids, with Hall effect mobilities of 2.8 ± 0.7 cm(2)/(V·s). Thiocyanate-capped CdSe NC thin films form photodetectors exhibiting sensitive photoconductivity of 10(-5) Ω(-1) cm(-1) under 30 mW/cm(2) of 488 nm illumination with I(photo)/I(dark) > 10(3) and form n-channel thin-film transistors with electron mobilities of 1.5 ± 0.7 cm(2)/(V·s), a current modulation of >10(6), and a subthreshold swing of 0.73 V/decade.  相似文献   

17.
采用密度泛函理论(DFT)的B3LYP/6-31G(d)方法对以低聚噻吩为端基、 苯并二噻吩(TPT)和并三噻吩(TTT)为共轭桥、 炔键为连接臂的20个模型化合物进行了计算研究. 在优化中性与离子态几何构型基础上, 获得了前线轨道能级、 电离能(IPs)、 电子亲和势(EAs)、 空穴/电子重组能(λhe)、 载流子迁移率(μhe)及吸收光谱等信息. 结果表明, 炔键的引入及端基低聚噻吩的增加对LUMO能级的调控作用较为显著, 而共轭桥的类型对HOMO能级影响较大; 合理选择端基、 共轭桥和连接臂等结构单元可对该类材料吸光波段及强度进行有效调节. 一维电荷传输模型结果表明, 所设计的化合物均是潜在的双极性有机半导体材料, 其中2,7-二([2,2':5',2'-三噻吩]-5-基)苯并[1,2-b:6,5-b']二噻吩(A3)和2,7-二(二噻吩并噻吩-2-基乙炔基)苯并[1,2-b:6,5-b']二噻吩(a-3)具有较高的电子迁移率, 值得进一步的实验探索研究.  相似文献   

18.
Solution-processable, electronegative, π-conjugated systems containing dicyanomethylene-substituted cyclopenta[b]thiophene were synthesized as potential active materials for air-stable n-type organic field-effect transistors (OFETs). Electrochemical measurements revealed that these compounds exhibited electrochemical stability and that the lowest unoccupied molecular orbital (LUMO) had an energy level less than -4.0 eV. Flash-photolysis time-resolved microwave conductivity (FP-TRMC) measurements were performed, and the value of intradomain electron mobility was determined to be as high as 0.1 cm(2) V(-1) s(-1) . The OFETs were fabricated by spin-coating thin films of the compounds as an active layer. The electron mobility of the OFETs was 3.5×10(-3) cm(2) V(-1) s(-1) in vacuum. Furthermore, electron mobility of the same order of magnitude and stable characteristics were obtained under air-exposed conditions. X-ray diffraction measurements of the spin-coated thin films revealed the difference of molecular arrangements depending on the inner conjugated units. Atomic force microscopy measurements of crystalline-structured films exhibited the formation of grains. The accomplishment of air-stability was attributed to the combined effect of the low-lying LUMO energy level and the molecular arrangements in the solid state, avoiding both the quenching of electron carriers and the intrusion of oxygen and/or moisture.  相似文献   

19.
用密度泛函理论B3LYP/6-31G**计算巯基偶氮苯分子及分子离子的空间构型和电子结构, 研究取代基对巯基偶氮苯单分子电子传输的影响. 结果表明, 拉电子基(—COOH、—NO2)的引入, 可以提高巯基偶氮苯单分子电子传输体系的稳定性, 使体系LUMO的离域性增高、S原子反应活性增强、HOMO-LUMO能隙显著减小, 进而降低电子传输能垒, 有利于分子电子传输. 相同取代基的分子离子比分子具有更小的HOMO-LUMO能隙, S—Au键更易形成, 金属-分子-金属结构的电子传输性更强.  相似文献   

20.
二氧化硅纳米粒子薄膜的制备及光学性能   总被引:7,自引:0,他引:7  
以二氧化硅胶体和聚二烯丙基二甲基氯化铵(PDDA)为原料,利用静电自组装技术制备了PDDA/SiO2复合薄膜. TEM图象显示,薄膜中的SiO2纳米粒子为密堆积,薄膜均匀、致密;电子衍射实验结果显示,所组装的薄膜为非晶态膜.载玻片表面组装SiO2纳米粒子薄膜后,透射率随薄膜双层数增加呈现周期变化.薄膜具有增透作用,载玻片双面组装薄膜后在一定波长范围内的透射率可提高5%以上. PDDA/SiO2复合薄膜的光学性质主要由SiO2纳米粒子决定,每一双层的平均物理厚度小于SiO2纳米粒子的粒径,薄膜中存在层间穿插现象,逐层组装的复合薄膜具有单层光学薄膜的特性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号