首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This work addresses the formulation of the thermodynamics of nonlocal plasticity using the gradient theory. The formulation is based on the nonlocality energy residual introduced by Eringen and Edelen (1972). Gradients are introduced for those variables associated with isotropic and kinematic hardening. The formulation applies to small strain gradient plasticity and makes use of the evanescent memory model for kinematic hardening. This is accomplished using the kinematic flux evolution as developed by Zbib and Aifantis (1988). Therefore, the present theory is a four nonlocal parameter-based theory that accounts for the influence of large variations in the plastic strain, accumulated plastic strain, accumulated plastic strain gradients, and the micromechanical evolution of the kinematic flux. Using the principle of virtual power and the laws of thermodynamics, thermodynamically-consistent equations are derived for the nonlocal plasticity yield criterion and associated flow rule. The presence of higher-order gradients in the plastic strain is shown to enhance a corresponding history variable which arises from the accumulation of the plastic strain gradients. Furthermore, anisotropy is introduced by plastic strain gradients in the form of kinematic hardening. Plastic strain gradients can be attributed to the net Burgers vector, while gradients in the accumulation of plastic strain are responsible for the introduction of isotropic hardening. The equilibrium between internal Cauchy stress and the microstresses conjugate to the higher-order gradients frames the yield criterion, which is obtained from the principle of virtual power. Microscopic boundary conditions, associated with plastic flow, are introduced to supplement the macroscopic boundary conditions of classical plasticity. The nonlocal formulation developed here preserves the classical assumption of local plasticity, wherein plastic flow direction is governed by the deviatoric Cauchy stress. The theory is applied to the problems of thin films on both soft and hard substrates. Numerical solutions are presented for bi-axial tension and simple shear loading of thin films on substrates.  相似文献   

2.
A thermodynamically consistent formulation of nonlocal damage in the framework of the internal variable theories of inelastic behaviours of associative type is presented. The damage behaviour is defined in the strain space and the effective stress turns out to be additively splitted in the actual stress and in the nonlocal counterpart of the relaxation stress related to damage phenomena. An important advantage of models with strain-based loading functions and explicit damage evolution laws is that the stress corresponding to a given strain can be evaluated directly without any need for solving a nonlinear system of equations. A mixed nonlocal variational formulation in the complete set of state variables is presented and is specialized to a mixed two-field variational formulation. Hence a finite element procedure for the analysis of the elastic model with nonlocal damage is established on the basis of the proposed two-field variational formulation. Two examples concerning a one-dimensional bar in simple tension and a two-dimensional notched plate are addressed. No mesh dependence or boundary effects are apparent.  相似文献   

3.
In metal grains one of the most important failure mechanisms involves shear band localization. As the band width is small, the deformations are affected by material length scales. To study localization in single grains a rate-dependent crystal plasticity formulation for finite strains is presented for metals described by the reformulated Fleck–Hutchinson strain gradient plasticity theory. The theory is implemented numerically within a finite element framework using slip rate increments and displacement increments as state variables. The formulation reduces to the classical crystal plasticity theory in the absence of strain gradients. The model is used to study the effect of an internal material length scale on the localization of plastic flow in shear bands in a single crystal under plane strain tension. It is shown that the mesh sensitivity is removed when using the nonlocal material model considered. Furthermore, it is illustrated how different hardening functions affect the formation of shear bands.  相似文献   

4.
This paper deals with a formulation of nonlocal and gradient plasticity with internal variables. The constitutive model complies with local internal variables which govern kinematic hardening and isotropic softening and with a nonlocal corrective internal variable defined either as the sum between a new internal variable and its spatial weighted average or as the gradient of a measure of plastic strain. The rate constitutive problem is cast in the framework provided by the convex analysis and the potential theory for monotone multivalued operators which provide the suitable tools to perform a theoretical analysis of such nonlocal and gradient problems. The validity of the maximum dissipation theorem is assessed and constitutive variational formulations of the rate model are provided. The structural rate problem for an assigned load rate is then formulated. The related variational formulation in the complete set of state variable is contributed and the methodology to derive variational formulations, with different combinations of the state variables, is explicitly provided. In particular the generalization to the present nonlocal and gradient model of the principles of Prager–Hodge, Greenberg and Capurso–Maier is presented. Finally nonlocal variational formulations provided in the literature are derived as special cases of the proposed model.  相似文献   

5.
基于热力学第一定律和非局部塑性理论,提出了一种求解应变局部化问题的非局部方法.对材料的每一点定义了局部和非局部两种状态空间,局部状态空间的内变量通过非局部权函数映射到非局部空间,成为非局部内变量.在应变软化过程中,局部状态空间中的塑性变形服从正交流动法则,材料的软化律在非局部状态空间中被引入.通过两个状态空间的塑性应变能耗散率的等效,得到了应变软化过程中明确定义的局部化区域以及其中的塑性应变分布.应用本方法导出了一维应变局部化问题的解析解.解析解表明,应变局部化区域的尺寸只与材料内尺度有关;对于高斯型非局部权函数,局部化区域的尺寸大约是材料内尺度的6倍.一维算例表明,局部化区域的塑性应变分布以及载荷-位移曲线仅与材料参数和结构几何尺寸有关,变形局部化区域的尺寸随着材料内尺度的减小而减小,同时塑性应变也随着材料内尺度的减小变得更加集中.当内尺度趋近于零时,应用本文方法得到的解与采用传统的局部塑性理论得到的解相同.  相似文献   

6.
In recent years there have been many papers that considered the effects of material length scales in the study of mechanics of solids at micro- and/or nano-scales. There are a number of approaches and, among them, one set of papers deals with Eringen's differential nonlocal model and another deals with the strain gradient theories. The modified couple stress theory, which also accounts for a material length scale, is a form of a strain gradient theory. The large body of literature that has come into existence in the last several years has created significant confusion among researchers about the length scales that these various theories contain. The present paper has the objective of establishing the fact that the length scales present in nonlocal elasticity and strain gradient theory describe two entirely different physical characteristics of materials and structures at nanoscale. By using two principle kernel functions, the paper further presents a theory with application examples which relates the classical nonlocal elasticity and strain gradient theory and it results in a higher-order nonlocal strain gradient theory. In this theory, a higher-order nonlocal strain gradient elasticity system which considers higher-order stress gradients and strain gradient nonlocality is proposed. It is based on the nonlocal effects of the strain field and first gradient strain field. This theory intends to generalize the classical nonlocal elasticity theory by introducing a higher-order strain tensor with nonlocality into the stored energy function. The theory is distinctive because the classical nonlocal stress theory does not include nonlocality of higher-order stresses while the common strain gradient theory only considers local higher-order strain gradients without nonlocal effects in a global sense. By establishing the constitutive relation within the thermodynamic framework, the governing equations of equilibrium and all boundary conditions are derived via the variational approach. Two additional kinds of parameters, the higher-order nonlocal parameters and the nonlocal gradient length coefficients are introduced to account for the size-dependent characteristics of nonlocal gradient materials at nanoscale. To illustrate its application values, the theory is applied for wave propagation in a nonlocal strain gradient system and the new dispersion relations derived are presented through examples for wave propagating in Euler–Bernoulli and Timoshenko nanobeams. The numerical results based on the new nonlocal strain gradient theory reveal some new findings with respect to lattice dynamics and wave propagation experiment that could not be matched by both the classical nonlocal stress model and the contemporary strain gradient theory. Thus, this higher-order nonlocal strain gradient model provides an explanation to some observations in the classical and nonlocal stress theories as well as the strain gradient theory in these aspects.  相似文献   

7.
The paper deals with a consistent and systematic general framework for the development of anisotropic continuum damage in ductile metals based on thermodynamic laws and nonlocal theories. The proposed model relies on finite strain kinematics based on the consideration of damaged as well as fictitious undamaged configurations related via metric transformation tensors which allow for the interpretation of damage tensors. The formulation is accomplished by rate-independent plasticity using a nonlocal yield condition of Drucker–Prager type, anisotropic damage based on a nonlocal damage growth criterion as well as non-associated flow and damage rules. The nonlocal theory of inelastic continua is established to be able to take into account long-range microstructural interaction. The approach incorporates macroscopic interstate variables and their higher-order gradients which properly describe the change in the internal structure and investigate the size effect of statistical inhomogeneity of the heterogeneous material. The idea of bridging length-scales is made by using higher-order gradients in the evolution equations of the equivalent inelastic strain measures which leads to a system of elliptic partial differential equations which is solved using the finite difference method at each iteration of the loading step and the displacement-based finite element procedure is governed by the standard principle of virtual work. Numerical simulations of the elastic–plastic deformation behavior of damaged solids demonstrate the efficiency of the formulation. Tension tests undergoing large strains are used to investigate the damage growth in high strength steel. The influence of various model parameters on the prediction of the deformation and localization of ductile metals is discussed.  相似文献   

8.
The effect of sub-structure changes in geo-materials is investigated here by incorporating the plastic spin in the anisotropic modified Cam Clay Model. The plastic spin is formulated as a function of internal variables in the constitutive equation. Dual back-stresses are incorporated as internal variables. The short range back-stress is used for the intragrain back-stress while the long range back-stress is used for the inter-grain back-stress. A linear evolution equation is used for the short range back-stress, and a non linear evolution equation is used for the long range back-stress. Individual evolution equations are used for the plastic spins for the short range back-stresses and for the long range back-stresses, respectively. To simulate the behavior of saturated soils at large strains, the coupled theory of mixtures with elasto-plasticity in an updated Lagrangian reference frame is adopted. The results showed that the effects of the long range back-stress are more significant for the large strain region while that of short range back-stress are more affective for the small strain region.  相似文献   

9.
One considers a linear thermoelastic composite medium, which consists of a homogeneous matrix containing a statistically homogeneous random set of ellipsoidal uncoated or coated heterogeneities. It is assumed that the stress–strain constitutive relations of constituents are described by the nonlocal integral operators, whereas the equilibrium and compatibility equations remain unaltered as in classical local elasticity. The general integral equations connecting the stress and strain fields in the point being considered and the surrounding points are obtained. The method is based on a centering procedure of subtraction from both sides of a known initial integral equation their statistical averages obtained without any auxiliary assumptions such as, e.g., effective field hypothesis implicitly exploited in the known centering methods. In a simplified case of using of the effective field hypothesis for analyzing composites with one sort of heterogeneities, one proves that the effective moduli explicitly depend on both the strain and stress concentrator factor for one heterogeneity inside the infinite matrix and does not directly depend on the elastic properties (local or nonlocal) of heterogeneities. In such a case, the Levin’s (1967) formula in micromechanics of composites with locally elastic constituents is generalized to their nonlocal counterpart. A solution of a volume integral equation for one heterogeneity subjected to inhomogeneous remote loading inside an infinite matrix is proposed by the iteration method. The operator representation of this solution is incorporated into the new general integral equation of micromechanics without exploiting of basic hypotheses of classical micromechanics such as both the effective field hypothesis and “ellipsoidal symmetry” assumption. Quantitative estimations of results obtained by the abandonment of the effective field hypothesis are presented.  相似文献   

10.
In this paper, a generalized anisotropic hardening rule based on the Mroz multi-yield-surface model for pressure insensitive and sensitive materials is derived. The evolution equation for the active yield surface with reference to the memory yield surface is obtained by considering the continuous expansion of the active yield surface during the unloading/reloading process. The incremental constitutive relation based on the associated flow rule is then derived for a general yield function for pressure insensitive and sensitive materials. Detailed incremental constitutive relations for materials based on the Mises yield function, the Hill quadratic anisotropic yield function and the Drucker–Prager yield function are derived as the special cases. The closed-form solutions for one-dimensional stress–plastic strain curves are also derived and plotted for materials under cyclic loading conditions based on the three yield functions. In addition, the closed-form solutions for one-dimensional stress–plastic strain curves for materials based on the isotropic Cazacu–Barlat yield function under cyclic loading conditions are summarized and presented. For materials based on the Mises and the Hill anisotropic yield functions, the stress–plastic strain curves show closed hysteresis loops under uniaxial cyclic loading conditions and the Masing hypothesis is applicable. For materials based on the Drucker–Prager and Cazacu–Barlat yield functions, the stress–plastic strain curves do not close and show the ratcheting effect under uniaxial cyclic loading conditions. The ratcheting effect is due to different strain ranges for a given stress range for the unloading and reloading processes. With these closed-form solutions, the important effects of the yield surface geometry on the cyclic plastic behavior due to the pressure-sensitive yielding or the unsymmetric behavior in tension and compression can be shown unambiguously. The closed form solutions for the Drucker–Prager and Cazacu–Barlat yield functions with the associated flow rule also suggest that a more general anisotropic hardening theory needs to be developed to address the ratcheting effects for a given stress range.  相似文献   

11.
以非局部塑性理论为基础,应用状态空间理论,通过局部和非局部两个状态空间的塑性能量耗散率等效原理,提出了一种求解应变局部化问题的新方法,以得到与网格无关的数值解.针对二维问题的屈服函数和流动法则导出了求解非局部内变量的一般方程,并提出了在有限元环境中求解应变局部化问题的应力更新算法.为了验证所提出的方法,对1个一维拉杆和3个二维平面应变加载试件进行了有限元分析.数值结果表明,塑性应变的分布和载荷-位移曲线都随着网格的变小而稳定地收敛,应变局部化区域的尺寸只与材料内尺度有关,而对有限元网格的大小不敏感.对于一维问题,当有限元网格尺寸减小时,数值解收敛于解析解.对于二维剪切带局部化问题,数值解随着网格尺寸的减小而稳定地向唯一解收敛.当网格尺寸减小时,剪切带的宽度和方向基本上没有变化.而且得到的塑性应变分布和网格变形是平滑的.这说明,所提方法可以克服经典连续介质力学模型导致的网格相关性问题,从而获得具有物理意义的客观解.此模型只需要单元之间的位移插值函数具有C~0连续性,因而容易在现有的有限元程序中实现而无需对程序作大的修改.  相似文献   

12.
A multiphase material is considered, which consists of a homogeneous elastic-plastic matrix containing a homogeneous statistically uniform random set of ellipsoidal elastic-plastic inclusions. The elastic properties of the matrix and the inclusions are the same, but the so-called “stress-free strains”, i.e. the strain contributions due to temperature loading, phase transformations, and the plastic strains, fluctuate. A general theory of the yielding for arbitrary loading (by the stress and by the temperature) is employed. The realization of an incremental plasticity scheme is based on averaging over each component of the nonlinear yield criterion. Usually, averaged stresses are used inside each component for this purpose. In distinction from this usual practice physically consistent assumptions about the dependence of these functions on the component's values of the second stress moments are applied. The application of the proposed theory to the prediction of the thermomechanical deformation behavior of a model material is shown.  相似文献   

13.
This paper builds on previous work by Houlsby and Puzrin (Int. J. Plasticity 16 (2000) 1017) in which a framework was set out for the derivation of rate-independent plasticity theory from thermodynamic considerations. A key feature of the formalism is that the entire constitutive response is determined by knowledge of two scalar functions. The loading history is effectively captured through the use of internal variables. In this paper, we extend the concept of internal variables to that of internal functions, which represent infinite numbers of internal variables. In this case the thermodynamic functions are replaced by functionals. We set out the formalism necessary to derive constitutive behaviour within this approach. The principal advantages of this development is that it can provide realistic modelling of kinematic hardening effects and smooth transitions between elastic and elastic–plastic behaviour.  相似文献   

14.
In this work, the question of homogenizing linear elastic, heterogeneous materials with periodic microstructures in the case of non-separated scales is addressed. A framework if proposed, where the notion of mesoscopic strain and stress fields are defined by appropriate integral operators which act as low-pass filters on the fine scale fluctuations. The present theory extends the classical linear homogenization by substituting averaging operators by integral operators, and localization tensors by nonlocal operators involving appropriate Green functions. As a result, the obtained constitutive relationship at the mesoscale appears to be nonlocal. Compared to nonlocal elastic models introduced from a phenomenological point of view, the nonlocal behavior has been fully derived from the study of the microstructure. A discrete version of the theory is presented, where the mesoscopic strain field is approximated as a linear combination of basis functions. It allows computing the mesoscopic nonlocal operator by means of a finite number of transformation tensors, which can be computed numerically on the unit cell.  相似文献   

15.
The scale transition methods have been developed for many years in order to obtain the overall behavior of polycrystalline materials from their microscopic behavior and their microstructure. Nevertheless, some basic aspects are absent from such formalisms. The most significant one seems to be the heterogeneization by plastic straining which involves nonlocality of hardening. In this article, a nonlocal theory based upon crystalline plasticity is developed from which a nonlocal constitutive equation at the grain level is derived. With regard to the polycrystal, in order to deduce the behavior of a local equivalent homogeneous medium, an integral equation is proposed and solved for nonlocal inhomogeneous materials by the self-consistent approximation. This scheme is developed in case of a two-phase nonlocal material representing the dislocation cell structure induced during plastic straining. Numerical simulations based on a simplified model show significant effects on the intragranular heterogeneization.  相似文献   

16.
通过求解一个第二类Fredholm方程,得到了基于非局部塑性软化模型的应变局部化问题理论解,结果表明,只有在当采用过非局部修正形式的非局部塑性软化模型才能得到应变局部化解,且得到的塑性应变分布和荷载响应依赖于所引入的特征长度及过非局部权参数。通过一维应变局部化有限元数值解,验证了非局部理论的引入能克服计算结果的网格敏感...  相似文献   

17.
A theory of primary and secondary creep deformation in metals is presented, which is based upon the concept of tensor internal state variables and the principles of continuum mechanics and thermodynamics. The theory is able to account for both multi-axial and time-dependent stress and strain states. The wellknown concepts of elastic, anelastic and plastic strains follow naturally from the theory. Homogeneous stress states are considered in detail and a simplified theory is derived by linearizing with respect to the internal state variables. It is demonstrated that the model can be developed in such a way that multi-axial constant-stress creep data can be presented as a single relationship between an equivalent stress and an equivalent strain. It is shown how the theory may be used to describe the multi-axial deformation of metals which are subjected to constant stress states. The multi-axial strain response to a general cyclic stress state is calculated. For uni-axial stress states, square-wave loading and a thermal fatigue stress cycle are analysed.  相似文献   

18.
A model for high temperature creep of single crystal superalloys is developed, which includes constitutive laws for nonlocal damage and viscoplasticity. It is based on a variational formulation, employing potentials for free energy, and dissipation originating from plasticity and damage. Evolution equations for plastic strain and damage variables are derived from the well-established minimum principle for the dissipation potential. The model is capable of describing the different stages of creep in a unified way. Plastic deformation in superalloys incorporates the evolution of dislocation densities of the different phases present. It results in a time dependence of the creep rate in primary and secondary creep. Tertiary creep is taken into account by introducing local and nonlocal damage. Herein, the nonlocal one is included in order to model strain localization as well as to remove mesh dependence of finite element calculations. Numerical results and comparisons with experimental data of the single crystal superalloy LEK94 are shown.  相似文献   

19.
The torsional static and dynamic behaviors of circular nanosolids such as nanoshafts, nanorods and nanotubes are established based on a new nonlocal elastic stress field theory. Based on a new expression for strain energy with a nonlocal nanoscale parameter, new higher-order governing equations and the corresponding boundary conditions are first derived here via the variational principle because the classical equilibrium conditions and/or equations of motion can- not be directly applied to nonlocal nanostructures even if the stress and moment quantities are replaced by the corresponding nonlocal quantities. The static twist and torsional vibration of circular, nonlocal nanosolids are solved and discussed in detail. A comparison of the conventional and new nonlocal models is also presented for a fully fixed nanosolid, where a lower-order governing equation and reduced stiffness are found in the conventional model while the new model reports opposite solutions. Analytical solutions and numerical examples based on the new nonlocal stress theory demonstrate that nonlocal stress enhances stiffness of nanosolids, i.e. the angular displacement decreases with the increasing nonlocal nanoscale while the natural frequency increases with the increasing nonlocal nanoscale.  相似文献   

20.
This paper discusses three hybrid-displacement finite element formulations for the simulation of strain localization based on nonlocal damage theory. An isotropic integral nonlocal damage model is chosen. The hybrid finite element formulations adopted in this work are developed from first principles of Mechanics. The first one defines the domain approximations using the Trefftz functions derived for the linear elastic regime. When damage appears the hybrid-Trefftz displacement formulation degenerates into an hybrid-displacement formulation. The second formulation uses an enriched Trefftz basis with the consideration of local Heaviside functions. The third formulation uses orthonormal Legendre polynomials for the domain approximations. A set of benchmark tests is presented and discussed in order to compare the performance and accuracy of the different models. It is shown that the proposed hybrid-Trefftz formulation allows the reproduction of the general behavior of the structure but does not lead to a correct simulation of the strain tensor evolution. The hybrid-displacement formulation that uses orthonormal Legendre polynomials gives coherent results, so it appears to be a promising field of investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号