首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 594 毫秒
1.
This paper presents a micromechanical model for a porous viscoplastic material containing two populations of pressurized voids of different sizes. Three scales are distinguished: the microscopic scale (corresponding to the size of the small voids), the mesoscopic scale (corresponding to the size of the large voids) and the macroscopic scale. It is assumed that the first homogenization step is performed at the microscopic scale, and, at the mesoscopic scale, the matrix is taken to be homogeneous and compressible. At the mesoscopic scale, the second homogenization step, on which the present study focuses, is based on a simplified representative volume element: a hollow sphere containing a pressurized void surrounded by a nonlinear viscoplastic compressible matrix. The nonlinear behavior of the matrix, which is expressed using the results obtained in the first homogenization step, is approached using a modified secant linearization procedure involving the discretization of the hollow sphere into concentric layers. Each layer has uniform secant moduli. The predictions of the model are compared with the more accurate numerical results obtained using the finite element method. Good agreement is found to exist with all the macroscopic stress triaxialities and all the porosity and nonlinearity values studied.  相似文献   

2.
This paper aims at studying the effects of a nonuniform distribution of voids on the macroscopic yield response of porous media with a rigid-perfectly plastic matrix. For this purpose, a semi-analytical model, recently proposed by Bilger et al. [Bilger, N., Auslender, F., Bornert, M., Masson, R., 2002. New bounds and estimates for porous media with rigid perfectly plastic matrix. C. R. Mecanique 330, 127–132], is extended to more general situations where the local porosity can fluctuate. The microstructure is described by a generalized Hashin-type assemblage of hollow spheres and the distribution of the local porosity is obtained from a three-dimensional simulated microstructure. The matrix layer around the voids is discretized into concentric sub-layers so as to take better into account the plasticity gradient along the radial direction. Classical homogenization techniques then provide new self-consistent estimates and upper bounds for the macroscopic yield surface. These results are compared first to the predictions of the Gurson model and its extensions and then to numerical results derived from three-dimensional Fast Fourier Transform (FFT) calculations carried out with the same material porosity distribution. A good agreement is obtained with the three-dimensional FFT calculations and with Gurson–Tvergaard's predictions even for high triaxiality and without fitting any parameter. Nevertheless, when the heterogeneous distribution of voids tends to form clusters, the proposed model fails to capture the properties of the macroscopic yield surface for large triaxiality factors.  相似文献   

3.
A general framework of hydro-mechanical-chemical coupling model is proposed for geomaterial subjected to the dual effects of mechanical loading and chemical degradation. Mechanical damage due to microcracks in solid matrix and chemical damage induced by the increase of porosity due to dissolution of matrix minerals as well as their interactions are considered. A special model is proposed for sandstone. The reaction rate is formulated within the framework of mineral reaction kinetics and can thus take into account different dissolution mechanisms of three main mineral compositions under different pH values. The increase of porosity is physically defined by the dissolution of mineral composition and the chemical damage is related to the increase of porosity. The mechanical behavior is characterized by unified plastic damage and viscoplastic damage modeling. The effective stress is used for describing the effect of pore pressure. The elastic parameters and plastic evolution as well as viscoplastic evolution are dependent on chemical damage. The advection, which is coupled with mechanical damage and chemical damage, is considered as the dominant mechanism of mass transfer. The application of model proposed is from decoupled experiments to fully coupled experiment. The model offers a convenient approach to describing the hydro-mechanical-chemical coupled behavior of geomaterial.  相似文献   

4.
A multi-scale constitutive model for the small deformations of semi-crystalline polymers such as high density Polyethylene is presented. Each macroscopic material point is supposed to be the center of a representative volume element which is an aggregate of randomly oriented composite inclusions. Each inclusion consists of a stack of parallel crystalline lamellae with their adjacent amorphous layers.Micro-mechanically based constitutive equations are developed for each phase. A viscoplastic model is used for the crystalline lamellae. A new nonlinear viscoelastic model for the amorphous phase behavior is proposed. The model takes into account the fact that the presence of crystallites confines the amorphous phase in extremely thin layers where the concentration of chain entanglements is very high. This gives rise to a stress contribution due to elastic distortion of the chains. It is shown that the introduction of chains’ elastic distortion can explain the viscoelastic behavior of crystalline polymers. The stress contribution from elastic stretching of the tie molecules linking the neighboring lamellae is also taken into account.Next, a constitutive model for a single inclusion considered as a laminated composite is proposed. The macroscopic stress-strain behavior for the whole RVE is found via a Sachs homogenization scheme (uniform stress throughout the material is assumed).Computational algorithms are developed based on fully implicit time-discretization schemes.  相似文献   

5.
6.
Constitutive modeling is studied for the homogenized elastic–viscoplastic behavior of pore-pressurized anisotropic open-porous bodies made of metallic base solids at small strains and rotations. For this purpose, by describing micro–macro relations relevant to periodic unit cells of anisotropic open-porous bodies subjected to pore pressure, constitutive features are discussed for the viscoplastic macrostrain rate in steady states. On the basis of the constitutive features found, the viscoplastic macrostrain rate is represented as an anisotropic function of Terzaghi’s effective stress, which is shown using Hill’s macrohomogeneity condition. The resulting viscoplastic equation is used to simulate the homogenized elastic–viscoplastic behavior of an ultrafine plate-fin structure subjected to uniaxial/biaxial loading in addition to pore pressure. The corresponding finite element homogenization analysis is also performed for comparison. It is demonstrated that the developed viscoplastic equation simulates well the anisotropic effect of pore pressure in the viscoplastic range in spite of there being no anisotropic factor and no fitting parameter in Terzaghi’s effective stress itself.  相似文献   

7.
A solution to the problem stated in the title is given by treating the porous matrix as a homogeneous material obeying the Gurson-Tvergaard model. As a first application, it is shown that the flow stress under hydrostatic loading of a material containing two populations of voids with very different sizes is almost the same as that of a material with only one population of voids and the same total porosity. As a second application, a self-consistent method is used to derive a value for the parameter introduced by Tvergaard in the original Gurson model to account for the interactions between cavities. Other models are also considered and shown to fail to satisfy the self-consistency requirement, whatever the value chosen for the parameter characterizing interactions between voids.  相似文献   

8.
In this study a micromechanical model is proposed for ductile porous material whose matrix is reinforced by small inclusions. The solid phase is described by a pressure sensitive plastic model. Based on works of Maghous et al. [6], a macroscopic plastic criterion is firstly obtained by using a two-step homogenization procedure. The effect of porosity at the mesoscale and the influence of inclusions at the microscale are taken into account simultaneously by this criterion. With a non-associated plastic flow rule, the micro-macro model is applied to modeling of mechanical behavior of a cement paste. In particular, we have considered at the microscopic scale the formation of calcite grains by carbonation process in the solid matrix. The studied cement paste is then seen as a reinforced matrix–pore system. Comparisons between numerical results and experimental data show that the proposed model is able to capture the main features of the mechanical behavior of the studied material.  相似文献   

9.
10.
In this work, we propose a constitutive model for the finite-strain, macroscopic response of porous viscoplastic solids, accounting for deformation-induced changes in the size, shape and distribution of the voids. The model makes use of consistent homogenization estimates obtained by the “iterated variational linear comparison” procedure of Agoras and Ponte Castañeda (2013) to characterize both the instantaneous effective response of the porous material and the evolution of the underlying microstructure. The proposed model applies for general, three-dimensional loading conditions and can be implemented numerically for use in standard FEM codes. We also investigate the interplay between the evolution of the microstructure and the macroscopic stress–strain response, in the context of displacement-controlled, plane strain loading (bi-axial straining) of initially isotropic, porous, rigid-plastic materials with power-law hardening. We focus on the effect of strain triaxiality, and consider both extensional and contractile loading conditions leading to porosity growth and collapse, respectively. For both types of loadings, it is found that the macroscopic behavior of the material exhibits an initial hardening regime followed by a softening regime at sufficiently large strains. Consistent with earlier models and experimental results, the softening regime for extensional loadings is a consequence of porosity growth. On the other hand, the softening behavior predicted for contractile loadings is found to be a consequence of void collapse, i.e., of rapid changes in the average shape of the pores leading to crack-like shapes. For both types of loadings, the transition from hardening to softening in the macroscopic response can be identified with the onset of macroscopic strain localization. The associated critical conditions at the onset of localization are determined as a function of the strain triaxiality. The type of localization band ranges from dilatational to compaction bands as the bi-axial straining varies from uniaxial extension to uniaxial contraction.  相似文献   

11.
The main purpose of this work is to develop a phenomenological model, which accounts for the evolution of the elastic and plastic properties of fcc polycrystals due to a crystallographic texture development and predicts the axial effects in torsion experiments. The anisotropic portion of the effective elasticity tensor is modeled by a growth law. The flow rule depends on the anisotropic part of the elasticity tensor. The normalized anisotropic part of the effective elasticity tensor is equal to the 4th-order coefficient of a tensorial Fourier expansion of the crystal orientation distribution function. Hence, the evolution of elastic and viscoplastic properties is modeled by an evolution equation for the 4th-order moment tensor of the orientation distribution function of an aggregate of cubic crystals. It is shown that the model is able to predict the plastic anisotropy that leads to the monotonic and cyclic Swift effect. The predictions are compared to those of the Taylor–Lin polycrystal model and to experimental data. In contrast to other phenomenological models proposed in the literature, the present model predicts the axial effects even if the initial state of the material is isotropic.  相似文献   

12.
In this paper, we develop a model of a homogenized fluid-saturated deformable porous medium. To account for the double porosity the Biot model is considered at the mesoscale with a scale-dependent permeability in compartments representing the second-level porosity. This model is treated by the homogenization procedure based on the asymptotic analysis of periodic “microstructure”. When passing to the limit, auxiliary microscopic problems are introduced, which provide the corrector basis functions that are needed to compute the effective material parameters. The macroscopic problem describes the deformation-induced Darcy flow in the primary porosities whereas the microflow in the double porosity is responsible for the fading memory effects via the macroscopic poro-visco-elastic constitutive law. For the homogenization procedure, we use the periodic unfolding method. We discuss also the stress and flow recovery at multiple scales characterizing the heterogeneous material. The model is proposed as a theoretical basis to describe compact bone behavior on multiple scales.  相似文献   

13.
14.
A self-consistent model developed to describe the elastic–viscoplastic behavior of heterogeneous materials is applied to low carbon steels to simulate tensile tests at various strain rates in the low temperature range. The choice of crystalline laws implemented in the model is discussed through the viscoplastic flow rule and several strain-hardening laws. Comparisons between three work-hardening models show that the account of dislocation annihilation improves the results on simulations at large strains. The evolution of the Lankford coefficients and texture development are also successfully simulated. Some microstructural aspects of deformation such as the stored energy and the evolution of the flow rates are discussed. By including the dislocation density on each slip system as internal variable, intragranular heterogeneities are underscored.  相似文献   

15.
The combined effects of void shape and matrix anisotropy on the macroscopic response of ductile porous solids is investigated. The Gologanu–Leblond–Devaux’s (GLD) analysis of an rigid-ideal plastic (von Mises) spheroidal volume containing a confocal spheroidal cavity loaded axisymmetrically is extended to the case when the matrix is anisotropic (obeying Hill’s [Hill, R., 1948. A theory of yielding and plastic flow of anisotropic solids. Proc. Roy. Soc. London A 193, 281–297] anisotropic yield criterion) and the representative volume element is subjected to arbitrary deformation. To derive the overall anisotropic yield criterion, a limit analysis approach is used. Conditions of homogeneous boundary strain rate are imposed on every ellipsoidal confocal with the cavity. A two-field trial velocity satisfying these boundary conditions are considered. It is shown that for cylindrical and spherical void geometries, the proposed criterion reduces to existing anisotropic Gurson-like yield criteria. Furthermore, it is shown that for the case when the matrix is considered isotropic, the new results provide a rigorous generalization to the GLD model. Finally, the accuracy of the proposed approximate yield criterion for plastic anisotropic media containing non-spherical voids is assessed through comparison with numerical results.  相似文献   

16.
We present a framework for a self-consistent theory of spall fracture in ductile materials, based on the dynamics of void nucleation and growth. The constitutive model for the material is divided into elastic and “plastic” parts, where the elastic part represents the volumetric response of a porous elastic material, and the “plastic” part is generated by a collection of representative volume elements (RVEs) of incompressible material. Each RVE is a thick-walled spherical shell, whose average porosity is the same as that of the surrounding porous continuum, thus simulating void interaction through the resulting lowered resistance to further void growth. All voids nucleate and grow according to the appropriate dynamics for a thick-walled sphere made of incompressible material. The macroscopic spherical stress in the material drives the response in all volume elements, which have a distribution of critical stresses for void nucleation, and the statistically weighted sum of the void volumes of all RVEs generates the global porosity. Thus, macroscopic pressure, porosity, and a distribution of growing microscopic voids are fully coupled dynamically. An example is given for a rate-independent, perfectly plastic material. The dynamics of void growth gives rise to a rate effect in the macroscopic material even though the parent material is rate independent.  相似文献   

17.
Single-phase fluid flow in porous media is usually direction dependent owing to the tortuosity associated with the internal structures of materials that exhibit inherent anisotropy. This article presents an approach to determine the tortuosity and permeability of porous materials using a structural measure quantifying the anisotropic distribution of pore voids. The approach uses a volume averaging method through which the macroscopic tortuosity tensor is related to both the average porosity and the directional distribution of pore spaces. The permeability tensor is derived from the macroscopic momentum balance equation of fluid in a porous medium and expressed as a function of the tortuosity tensor and the internal structure of the material. The analytical results generally agree with experimental data in the literature.  相似文献   

18.
We present the results of lattice Boltzmann (LB) simulations for the planar-flow of viscoplastic fluids through complex flow channels. In this study, the Bingham and Casson model fluids are covered as viscoplastic fluid. The Papanastasiou (modified Bingham) model and the modified Casson model are employed in our LB simulations. The Bingham number is an essential physical parameter when considering viscoplastic fluid flows and the modified Bingham number is proposed for modified viscoplastic models. When the value of the modified Bingham number agrees with that of the “normal” Bingham number, viscoplastic fluid flows formulated by modified viscoplastic models strictly reproduce the flow behavior of the ideal viscoplastic fluids. LB simulations are extensively performed for viscoplastic fluid flows through complex flow channels with rectangular and circular obstacles. It is shown that the LB method (LBM) allows us to successfully compute the flow behavior of viscoplastic fluids in various complicated-flow channels with rectangular and circular obstacles. For even low Re and high Bn numbers corresponding to plastic-property dominant condition, it is clearly manifested that the viscosity for both the viscoplastic fluids is largely decreased around solid obstacles. Also, it is shown that the viscosity profile is quite different between both the viscoplastic fluids due to the inherent nature of the models. The viscosity of the Bingham fluid sharply drops down close to the plastic viscosity, whereas the viscosity of the Casson fluid does not rapidly fall. From this study, it is demonstrated that the LBM can be also an effective methodology for computing viscoplastic fluid flows through complex channels including circular obstacles.  相似文献   

19.
This study formulates a micromechanical model for predicting effective viscoelastic–viscoplastic responses of composites. The studied composites consist of solid spherical particle reinforcements dispersed in a homogeneous matrix. The particle constituent is assumed linear elastic, while the matrix exhibits combined viscoelastic–viscoplastic responses. The Schapery integral model is used for the 3D isotropic non-linear viscoelastic responses. Two viscoplastic models are considered: the Perzyna model, having a rate-independent yield surface and an overstress function, and the Valanis endochronic model based on an irreversible thermodynamics without a yield surface. The Valanis model is suitable for materials when viscoplastic responses occur at early loadings (small stress levels). A unit-cell model with four particle and polymer sub-cells is generated to obtain homogenized responses of the particle-reinforced composites. Available micromechanical models and experimental data in the literature are used to verify the proposed micromechanical model in predicting effective time-dependent and inelastic responses of composites. Field variables in the homogenized composites are compared to the ones in heterogeneous composites. The heterogeneous composites, having detailed particle geometries, are modeled using finite element (FE) method.  相似文献   

20.
Many important processing techniques for nanocrystalline solids, such as ball milling and compaction, are frequently accompanied by the presence of voids in the end products. These voids can apparently lower the yield strength of the material. In order to address the issue of competition between grain size and porosity, we develop an explicit, analytical composite model that allows us to determine the viscoplastic response of a porous, nanocrystalline solid. The development made use of the concept of a three-phase composite comprising of the plastically harder grain interior, plastically softer grain-boundary affected zone (GBAZ), and porosity. A homogenization theory that accounts for the evolution of porosity during plastic flow is established. This establishment is built upon the extension of a linear viscoelastic composite to a non-linear viscoplastic one, in which the viscoplastic behavior of the constituent phases is represented by a unified constitutive law. Then by means of a field fluctuation method, the local strain rates are linked to the applied total strain rate. Such a linkage in turn provides the secant viscosity of the constituent phases at every stage of deformation. In order to test the applicability of the developed theory, we have applied it to model the viscoplastic response of an iron and an iron–copper mixture tested by Khan et al. [Khan, A.S., Zhang, H., Takacs, L., 2000. Mechanical response and modeling of fully compacted nanocrystalline iron and copper. Int. J. Plasticity 16, 1459–1476] and Khan and Zhang [Khan, A.S., Zhang, H., 2000. Mechanically alloyed nanocrystalline iron and copper mixture: behavior and constitutive modeling over a wide range of strain rates. Int. J. Plasticity 16, 1477–1492]. It is demonstrated that the theory is capable of capturing the major features of the tested results at various grain sizes and porosities. Our calculations further point to the change of yield strength in the Hall–Petch plot from an initial increase to level off, and then to decline, at various porosities under a constant strain-rate loading. This in turn brings about the existence of a critical grain size in the nano-meter range at which the material exhibits maximum yield strength. Moreover, this critical grain size tends to move to the left in the Hall–Petch plot as the GBAZ becomes softer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号