首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel bacterial cellulose nanofiber-based carbon paste electrode (BCPE) was fabricated. It was characterized by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. Compared with traditional carbon paste electrode, BCPE exhibited better electrochemical reversibility with the enhancement of the redox currents and decrease of peak potential separation as well as lower charge transfer resistance in Fe(CN)63?/4? redox system. Keggin-type sodium phosphopolyoxomolybdate, PMo12, was successfully assembled on BCPE via cyclic voltametric scan, and the obtained PMo12/BCPE possessed not only a good electrochemical behavior but also an excellent electrocatalytic activity toward the reduction of nitrite. Because of its nano-dimension, lower cost and prominent electrochemical properties, bacterial cellulose-based carbonaceous materials would be a candidate of graphite for the preparation of novel carbon paste electrode.  相似文献   

2.
1 : 12 Phosphomolybdic acid (PMo12) and graphite powder were homogeneously dispersed into an n‐octylpyridinum hexafluorophosphate base carbon ionic liquid electrode (CILE). The cyclic voltammograms of the PMo12 modified CILE showed three well‐defined pairs of redox peaks due to the PMo12 system. Formal potentials and electrochemical characteristics including electron transfer rate constant and transfer coefficient were evaluated. Additionally, PMo12 modified CILE exhibited good electrocatalytic activity toward iodate reduction. The kinetic of catalytic reduction of iodate on PMo12 modified CILE was investigated in detail. The modified electrode was used for amperometric determination of iodate in commercial table salt.  相似文献   

3.
A nanohybrid biomaterial was fabricated by mixing Co3O4 nanorods, gold nanoparticles (Au-NPs) and myoglobin (Mb), and depositing it on the surface of a carbon paste electrode containing the ionic liquid N-hexylpyridinium hexafluorophosphate as the binder. UV–vis and FT-IR revealed the Mb in the composite film to have remained in its native structure. A pair of well-defined redox peaks appears in cyclic voltammograms and indicates direct electron transfer from the Mb to the underlying electrode. The results are attributed to the favorable orientation of Mb in the composite film, to the synergistic effects of Co3O4 nanorods and Au-NPs. The modified electrode shows excellent electrocatalytic ability towards the reduction of substrates such as trichloroacetic acid and nitrite, and displays good stability and reproducibility.
Figure
A nanohybrid biomaterial composed of Co3O4 nanorods, gold nanoparticles and myoglobin was deposited on the surface of an ionic liquid modified carbon paste electrode. Direct electron transfer of Mb was realized and the electrocatalysis of the modified electrode was investigated.  相似文献   

4.
An ionic liquid N‐hexylpyridinium hexafluorophosphate (HPPF6) modified carbon paste electrode was fabricated for the sensitive voltammetric determination of adenosine in this paper. Carbon ionic liquid electrode (CILE) was prepared by mixing graphite powder and HPPF6 together and the CILE was characterized by scanning electron microscopy (SEM) and electrochemical methods. The electrochemical behaviors of adenosine on the CILE were studied carefully. Compared with the traditional carbon paste electrode (CPE), a small negative shift of the oxidation peak potential appeared with greatly increase of the oxidation peak current, which indicated the presence of ionic liquid in the carbon paste not only as the binder but also as the modifier and promoter. Under the optimal conditions the oxidation peak current increased with the adenosine concentration in the range from 1.0×10?6 mol/L to 1.4×10?4 mol/L with the detection limit of 9.1×10?7 mol/L (S/N=3) by differential pulse voltammetry. The proposed method was applied to the human urine samples detection with satisfactory results.  相似文献   

5.
A [C8mim]3PMo12O40-modified ionic liquid carbon paste electrode ([C8mim]3PMo12O40-ILCPE, C8mim = 1-methyl-3-octylimidazolium) was successfully fabricated. Its electrochemical properties were carried out on the cyclic voltammograms. The results of the cyclic voltammograms indicated that [C8mim]3PMo12O40-ILCPE exhibited remarkable electrocatalytic activities toward the reduction of BrO3 and good stability. The value of Ipc was as a function with the concentration of bromate from 2 × 10−6 to 1 × 10−4 M, which indicated that the [C8mim]3PMo12O40-ILCPE can be a candidate for electrochemical sensor.  相似文献   

6.
A carbon fiber paste electrode using ionic liquid as the binder (CFILE) was fabricated. The electrochemical characteristics of the electrode was examined in ferro‐/ferricyanide solution and showed better conductivity and reversibility when compared with graphite paste‐ionic liquid electrode (GPILE) and a little better than that on the carbon nanotube paste‐ionic liquid electrode (CNTILE). Glyphosate (GLY), a pesticide, exhibited excellent catalysis to the oxidation of Ru(bpy)2+3 on CFILE and brought an obvious enhancement to the electrochemiluminescence (ECL) intensity of Ru(bpy)2+3. Based on the catalytic ability of GLY, a simple ECL method for GLY detection had been established. Under optimum conditions, the enhanced ECL intensities were found to had linearly respond to the GLY concentration between 3.0×10?7 and 3.0×10?5 mol/L, and the detection limit (S/N=3) was 2.0×10?7 mol/L. The electrode also showed excellent sensitivity in detecting GLY‐spiked soybean samples. The linear range for GLY in soybean samples was 1.0×10?6–4.0×10?5 mol/L and the detection limit was 5.0×10?7 mol/L, equal to 8.45 µg GLY in per gram of soybean. The detection limit in soybean sample was lower than the USA, EU regulation and so on. If the method is coupled with the separation technology, it can be applied to detect the GLY in the contaminated samples.  相似文献   

7.
A room temperature ionic liquid (RTIL) modified carbon paste electrode was constructed based on the substitute of paraffin with 1-butyl-3-methyl-imidazolium hexafluorophosphate (BMIMPF6) as binder for carbon paste. Direct electrochemistry and electrocatalytic behaviors of hemoglobin (Hb) entrapped in the sodium alginate (SA) hydrogel film on the surface of this carbon ionic liquid electrode (CILE) were investigated. The presence of IL in the CILE increased the electron transfer rate and provided a biocompatible interface. Hb remained its bioactivity on the surface of CILE and the SA/Hb modified electrode showed a pair of well-defined, quasi-reversible cyclic voltammetric peaks with the apparent standard potential (E0′) at about −0.344 V (vs. SCE) in pH 7.0 Britton–Robinson (B–R) buffer solution, which was attributed to the Hb Fe(III)/Fe(II) redox couple. UV–Vis absorption spectra indicated that heme microenvironment of Hb in SA film was similar to its native status. Hb showed a thin-layer electrochemical behavior in the SA film with the direct electron transfer achieved on CILE without the help of electron mediator. Electrochemical investigation indicated that Hb took place one proton with one electron electrode process and the average surface coverage of Hb in the SA film was 3.2 × 10−10 mol/cm2. The immobilized Hb showed excellent electrocatalytic responses to the reduction of H2O2 and nitrite.  相似文献   

8.
The voltammetric response of graphite or carbon nanotube paste electrodes, which incorporate the room temperature ionic liquid, N‐butyl‐N‐methyl pyrrolidinium bis(trifluoromethylsulfonyl) imide or [C4mpyrr][NTf2], (RTIL‐CNTPE and RTIL‐CPE respectively) as the binder, towards anionic, cationic and neutral redox probes is examined and compared to conventional paste electrodes which use mineral oil as the binder. The RTIL paste electrodes are found to suffer from very large background currents due to capacitive charging. This is exacerbated further when CNTs are combined with RTILs in the paste. The large charging currents obscure any Faradaic processes of interest, especially at low analyte concentrations. By employing steady state voltammetry at a rotating disk electrode made of the RTIL pastes this problem can be overcome. This allows the electroanalytical properties of these interesting electrode substrates, which combine the attractive properties of CNTs with RTILs to be further explored and developed.  相似文献   

9.
Room temperature ionic liquids (RTILs), 1‐n‐butyl‐3‐methylimidazolium tetrafluoroborate, [bmim]BF4, and multiwalled carbon nanotubes (MWCNTs) were used for improvement of a praseodymium carbon paste ion selective sensor response. [bmim]BF4 can be a better binder than mineral oils. MWCNTs have a good conductivity which helps the transduction of the signal in carbon paste electrode. The characteristics of these electrodes as potentiometric sensors were evaluated and compared with PVC membrane sensor. The results indicate that potentiometric sensor constructed with ionic liquid shows an increase in performance in terms of Nernstian slope, selectivity, response time, and response stability compared to Pr(III) PVC membrane sensor.  相似文献   

10.
The present work reports on the synthesis, characterization and performance of a new metal-containing ionic liquid [(C10H21)2-bim]2[Cd2Cl6] (bim = benzimidazole) as an electrocatalyst of hydrogen peroxide and bromate. The structure of the Cd(II)-containing ionic liquid (Cd-IL) was characterized by X-ray crystallography, IR spectroscopy and elemental analysis. The molecular structure contained two independent cations of benzimidazolium and one binuclear anion of . The cadmium atom had a tetrahedral geometry by coordinating to four chlorine atoms. The melting point of Cd-IL was 80 °C. Electrochemical properties of the Cd-IL had been investigated by preparing bulk-modified carbon paste electrode (Cd-IL/CPE), and Cd-IL was used as a binder and an electrocatalyst. This modified electrode showed good electrocatalytic activities toward the reduction of the hydrogen peroxide and bromate, and the results were reproducible with a lower detection limit than that mentioned in an earlier report. This work demonstrated that the Cd-IL may become a new kind of functional material in constructing chemicals and biosensors.  相似文献   

11.
In this paper, a survey has been undertaken to clarify the possible reasons for the electrocatalytic activity obtained by the presence of ionic liquid in carbon paste electrode (CPE). For this purpose, the effect of the addition of traces of ionic liquid to conventional CPE was investigated. Fe(CN)63?/4? was used as a probe and two ionic liquids, namely n‐octylpyridinum hexafluorophosphate and 1‐octyl‐3‐methylimidazolium hexaflourophosphate were tested for their electrocatalytic activity. The reasons for this electrocatalytic behavior were evaluated and it was found that different factors such as increase in the ionic conduction of the binder, decrease in the resistance of the modified electrode, increase in ion exchange properties of the electrode and the inherent catalytic activity of ionic liquids are responsible for the considerable improved electrochemical response obtained in the presence of traces of ionic liquid.  相似文献   

12.
The solid hybrid material (H3/4pbpy)4[PMo12O40]·1.25H2O (1) (pbpy=5-phenyl-2-(4-pyridinyl)pyridine) has been prepared and characterized. A structural feature of compound 1 is that the polyoxometalate anions exhibit a one-dimensional inorganic double chain-like structure via weak interactions of O…O. The organic moiety exhibits regular packing with offset aromatic-aromatic interactions between the pbpys, leading to a compact supramolecular framework structure to accommodate the inorganic chains. Compound 1 was employed to fabricate the three-dimensional bulk-modified carbon paste electrode (1-CPE) to research on its electrochemistry properties. The results indicate that 1 retained Keggin molybdate anion electrocatalytic activities toward the reduction of chlorate, hydrogen peroxide and nitrite.  相似文献   

13.
A new type of potentiometric sensor based on a recently constructed carbon ionic liquid electrode (CILE) is described. Two kinds of ionic liquids, i.e., N‐octylpyridinium hexafluorophosphate (OPFP) and 1‐butyl‐3‐methylimidazoluim hexafluorophosphate (BMFP) were tested as binder for construction of the carbon composite electrode. The characteristics of these electrodes as potentiometric sensors were evaluated and compared with those of the traditional carbon paste electrode (CPE). The results indicate that potentiometric sensors constructed with ionic liquid show an increase in performance in terms of Nernstian slope, selectivity, response time, and response stability compared to CPE.  相似文献   

14.
Compared with paraffin oil, the use of ionic liquids as a binder in carbon paste type electrodes was shown to greatly enhance the accumulation of analytes, as illustrated with 17α‐ethynylestradiol as a model. The ionic “liquid” n‐octyl‐pyridinium hexafluorophosphate [C8py][PF6] was most efficient among several ionic liquids investigated. Such preconcentration allowed a [C8py][PF6]‐multiwalled carbon nanotubes (MWCNTs) (95 : 5 w/w) composite electrode to be useful for adsorptive stripping voltammetry. Screen‐printed electrodes modified with [C8py][PF6]‐MWCNTs were developed and were able to achieve high sensitivity during adsorptive stripping voltammetric measurements under optimised conditions.  相似文献   

15.
A sensitive non-enzymatic glucose electrochemical biosensor (Cu/PMo12-GR/GCE) was developed based on the combination of copper nanoparticles (CuNPs) and phosphomolybdic acid functionalized graphene (PMo12-GR). PMo12-GR films were modified on the surface of glassy carbon electrode (GCE) through electrostatic self-assembly with the aid of poly diallyl dimethyl ammonium chloride (PDDA). Then CuNPs were successfully decorated onto the PMo12-GR modified GCE through electrodeposition. The morphology of Cu/PMo12-GR/GCE was characterized by scanning electron microscope (SEM). Cyclic voltammetry (CV) and chronoamperometry were used to investigate the electrochemical performances of the biosensor. The results indicated that the modified electrode displayed a synergistic effect of PMo12-GR sheets and CuNPs towards the electro-oxidation of glucose in the alkaline solution. At the optimal detection potential of 0.50 V, the response towards glucose presented a linear response ranging from 0.10 μM to 1.0 mM with a detection limit of 3.0 × 10−2 μM (S/N = 3). In addition, Cu/PMo12-GR/GCE possessed a high selectivity, good reproducibility, excellent stability and acceptable recovery, which indicating the potential application in clinical field.  相似文献   

16.
A new carbon ionic liquid electrode (CILE) has been constructed using a low melting point (39?°C) hydrophobic ionic liquid (IL) 1-propyl-3-methylimidazolium hexafluorophosphate ([Pmim][PF6]) as the binder. Both cyclic voltammetry and electrochemical impedance spectroscopy demonstrate that, in addition to the composition optimization of the IL/graphite composite, heating the composite at a temperature a little higher than the melting point of [Pmim][PF6] can also lower the background current and enhance the mechanical strength of the CILE. The heated CILE is more sensitive than the traditional carbon paste electrode for the detection of H2O2. Glucose oxidase (GOx) can be easily entrapped in the bulk IL/graphite composite. Heating the GOx-modified CILE (GOx-CILE) at the melting point of [Pmim][PF6] does not lower the catalytic activity of GOx. As compared with n-octylpyridinium hexafluorophosphate (melting point 65?°C) as the binder, [Pmim][PF6]-based CILE is much better in signal-to-noise ratio. Under the optimum conditions, the [Pmim][PF6]-based GOx-CILE has a linear amperometric response to glucose over a concentration range of 2.0–26?mM with the detection limit as low as 0.39?mM. It follows that choosing an IL with a melting point of ca. 40?°C as a binder to fabricate enzyme-entrapped CILEs is a good strategy for the enhancement of the performance of the electrode.  相似文献   

17.
A simpe electrochemical sensor for detection of cholic acid (CA) was designed by modifying phosphomolybdate (PMo12) doped polypyrrole (PPy) film on glassy carbon electrode (PMo12‐PPy/GCE). The electrochemical behavior of CA on PMo12‐PPy/GCE was investigated by cyclic voltammetry and 0.5 order differential voltammetry. The results indicated that CA had high inhibitory activity toward the peak currents of PMo12‐PPy/GCE. The reduction peak currents were linearly related to the logarithmic value of the concentration of CA from 1.0×10?7 to 1.0×10?3 mol/L with a low detection limit of 1.0×10?8 mol/L. The developed sensor exhibited excellent sensitivity, selectivity and stability for detection of CA, and it could be successfully applied to detect the level of CA in the urine samples. Moreover, the response mechanism of CA on the PMo12‐PPy/GCE was discussed in detail.  相似文献   

18.
A DNA-modified carbon paste electrode (DNA-CPIE) was designed by using a mixture of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate and paraffin oil as the binder. The electrochemistry of rutin at the DNA-CPIE was investigated by cyclic voltammetry and differential pulse voltammetry. Rutin exhibits a pair of reversible redox peaks in buffer solutions of pH 3.0, and respective electrochemical parameters are established. Under the optimal conditions, the oxidative peak current is linear with the concentration of rutin in the range from 8?×?10?9 to 1?×?10?5 mol L?1, and the detection limit is 1.3?×?10?9 mol L?1 (at S/N?=?3). The electrode exhibits higher sensitivity compared to DNA modified carbon paste electrode without ionic liquid and better selectivity comparing with electrodes without DNA. It also showed good performance, stability, and therefore represents a viable method for the determination of rutin.  相似文献   

19.
A paste electrode (SWNT&RTIL PE) has been prepared using carboxylic group‐functionalized short single‐walled carbon nanotubes (SWNTs) mixed with 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6, one kind of room temperature ionic liquid, RTIL). Its electrochemical behavior was investigated by cyclic voltammetry and electrochemical impedance spectroscopy in comparison with the paste electrode using mineral oil as a binder. Results highlighted the advantages of the paste electrode: not only higher conductivity, but also lower potential separation (ΔEp), higher peak current (ip) and better reversibility towards dopamine (DA), methylene blue (MB) and K3[Fe(CN)6]. The SWNT&RTIL PE could be used to detect the number of guanine bases and adenine bases contents in per mol oligonucleotides according to the current response in the range of 0.05–2.0 nM. Based on the current response of guanine bases, oligonucleotides could be detected sensitively in the B–R buffer solution with a detection limit of 9.9 pM. The heterogeneous electron transfer rate constant (ks) of guanine bases contents in the oligonucleotides was investigated and its value was 0.90 s?1. In essence the SWNT&RTIL PE showed high sensitivity, reliability, stability and reproducibility for the detection of DNA.  相似文献   

20.
The electrochemical oxidation of levodopa on the surface of a carbon paste electrode modified with graphene nanosheets, 1‐(4‐bromobenzyl)‐4‐ferrocenyl‐1H‐[1,2,3]‐triazole (1,4‐BBFT) and hydrophilic ionic liquid (n‐hexyl‐3‐methylimidazolium hexafluoro phosphate) as a binder is studied. It has been found that the oxidation of levodopa at the surface of a modified electrode occurs at a potential of about 210 mV less positive than that of an unmodified carbon paste electrode (CPE). The prepared modified electrode exhibits a very good resolution of the voltammetric peaks of levodopa and cabergoline. The electrode has been applied successfully for the determination of levodopa and cabergoline in some real samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号