首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The diazadiene complex of trivalent ytterbium, Cp2Yb(DAD) (1) (DAD=But−N=CH−CH=N−But) was prepared according to three different procedures, namely, by oxidation of Cp2Yb(THF)2 with diazadiene in THF, by the reaction of Cp2YbCl with DAD2−Na+ 2 taken in a ratio of 2∶1, and by the reaction of Cp2YbCl(THF) with DAD2−Na+ 2 taken in a ratio of 1∶1. Complex1 was characterized by microanalysis, IR spectroscopy, magnetochemistry, and X-ray diffraction analysis. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 384–386, February, 1999.  相似文献   

2.
Homoleptic 2,2′-bipyridyl complexes of lanthanides (Ln), Ln(bpy)4, were prepared by the reactions of iodides LnI2(THF)2 (Ln=Sm, Eu, Tm, or Yb), LnI3(THF)3 (Ln=La, Ce, Pr, Nd, Gd, or Tb), or bis(trimethylsilyl)amides Ln[N(SiMe3)2]3 (Ln=Dy, Ho, Er, or Lu) with bipyridyllithium in tetrahydrofuran (THF) or 1,2-dimethoxyethane in the presence of free 2,2′-bipyridine. The IR and ESR spectral data, the magnetic susceptibilities, and the results of X-ray diffraction analysis indicate that the complexes of all elements of the lanthanide series, except for the europium complex, contain Ln+3 cations and anionic bpy ligands. According to the X-ray diffraction data, the coordination polyhedra about the Sm and Eu atoms are cubes, whereas the environment about the Yb atom is a distorted dodecahedron. In the ionic complex [Lu(bpy)4][Li(THF)4], the geometry of the [Lu(bpy)4] anion is similar to that of the Lu(bpy)4 complex. The possible modes of charge distributions over the ligands,viz., Ln(bpy2−)(bpy.−)(bpy0)2 and Ln(bpy.−)3(bpy0), are discussed. Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 1897–1904, November, 2000.  相似文献   

3.
Two new CuI coordination polymers, [CuI(TATP) (CN)] n (1) and [CuI(bpy)(SCN)] n (2) (TATP = 1,4,8,9-tetranitrogen-trisphene, bpy = 2,2′-bipyiridine), have been synthesized under hydrothermal conditions and structurally characterized by elemental analysis, IR, and X-ray crystallography. In 1 and 2, the metal centers are linked by bridging CN/SCN to form one-dimensional chains in the crystals and are stabilized by interchain π–π stacking interaction.  相似文献   

4.
The reaction of the cyclopentadienyllutetium anthracenide, C5H5Lu(C14H10)2−(THF)2 (1), with azobenzene yielded the [C5H5(THF)Lu(μ−η22−PhN—NPh)]2(THF)2 (2) binuclear complex. The structure of the reaction product was established by X-ray structural analysis. The dynamic behavior of complex2 in a THF-d8 solution was studied by1H NMR spectroscopy in the temperature range of 265–330 K. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1667–1671, September, 1997.  相似文献   

5.
The stilbene complex of ytterbium (PhCH=CHPh)Yb(THF)2 (1) was prepared by the reaction of YbI2(THF)2 with a twofold excess of (PhCH=CHPh) Li+. Based on the data of IR and ESR spectroscopy and on the results of magnetic measurements, compound1 was characterized as a complex of divalent ytterbium with the stilbene dianion. The reactivity of complex1 toward different types of reagents was studied. The structure of the product of the reaction of1 with 2,4,6-tri(tert-butyl)phenol (2,4,6-But 3C6H2O)2Yb(THF)3 was established by X-ray diffraction analysis. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2345–2350, November, 1998.  相似文献   

6.
The metathesis reaction of the magnesium complex [(dpp-BIAN)2−Mg2+(THF)3] (dpp-BIAN is 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene) with one equivalent of AlCl3 in toluene gave the [(dpp-BIAN)2−AlCl2][Mg2Cl3(THF)6]+ complex (1). Reduction of dpp-BIAN with aluminum metal in the presence of AlCl3 and AlI3 in toluene and diethyl ether afforded the radical-anionic complex [(dpp-BIAN)AlCl2] (2) and the dianionic complexes [(dpp-BIAN)2−AlI(Et2O)] (3) and [(dpp-BIAN)2−AlCl(Et2O)] (4), respectively. Compounds 1–4 were isolated in the crystalline state and characterized by IR spectroscopy and elemental analysis. The structures of compounds 1–3 were established by X-ray diffraction. Compound 2 was characterized by ESR spectroscopy. Compounds 3 and 4 were studied by 1H and 13C NMR spectroscopy. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 409–415, March, 2006.  相似文献   

7.
The molecular hydrides Ln11H2(THF)2 (Ln=Sm or Eu) were prepared by hydrogenolysis of the naphthalene complexes of divalent samarium and europium C10H8Ln(THF)2 (Ln=Sm or Eu, respectively) as well as of the stilbene derivative of samarium(II) (PhCHCHPh)Sm(DME)2 in THF at room temperature under atmospheric pressure. The resulting complexes were characterized by the data of microanalysis, IR spectroscopy, and magnetic susceptibility. Chemical properties of the complexes were studied. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 947–945, May, 2000.  相似文献   

8.
Reduction of the bent-sandwich [·5-(Ph)Ind]2HfCl2 complex (1) (where (Ph) Ind is the 2-phenylindenyl anion) in a THF medium was studied by low-temperature cyclic voltammetry. Complex1 is stable in THF at a temperature lower than −50°C and undergoes reversible one-electron reduction to radical anion1 . −. Further one-electron reduction of1 . − to dianion1 2− is accompanied by the elimination of two Cl ions to form the bisindenyl sandwich [·5-(Ph)Ind]2Hf complex (2). This complex can undergo reversible one-electron reduction to the corresponding radical anion2 . −, which is stable within the cyclic voltammetry time scale. AtT=−30°C in a THF solution, complex1 was reduced to a diamagnetic (apparently, binuclear) HfIII complex, which was characterized by cyclic voltammetry. Synthesis and the crystal structure of complex1 are reported. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2161–2165, December, 1997.  相似文献   

9.
The kinetics of protonation of tungsten hydrides WH(CO)2(NO)L2 (1, L = PMe3, PEt3, P(OPri)3, PPh3) by weak OH-acids (PhOH, (CF3)2CHOH, (CF3)3COH) in hexane was studied by IR spectroscopy. The study of the reactions of compounds 1 with OH-acids at 190–270 K revealed that the first step involves the formation of dihydrogen-bonded W(CO)2(NO)L2(H)...HOR complexes. When the temperature increases to ambient, the proton transfer and evolution of molecular hydrogen occur, affording the final products: organyloxy derivatives W(OR)(CO)2(NO)L2. The study of the kinetics at 298 K found that the proton transfer is the rate-determining step. The rate constants k app are 2.2·10−5–6.3·10−4 s−1, and the free activation energies are ΔG 298K = 22–23 kcal mol−1. The rate constants depend on the proton-accepting properties of the hydride and the acidic properties of the OH-proton donor and increase in the same order as the enthalpy of hydrogen bond formation. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 837–841, May, 2007.  相似文献   

10.
The effect of the nature of substituents at sp2-hybridized silicon atom in the R2Si=CH2 (R = SiH3, H, Me, OH, Cl, F) molecules on the structure and energy characteristics of complexes of these molecules with ammonia, trimethylamine, and tetrahydrofuran was studied by the ab initio (MP4/6-311G(d)//MP2/6-31G(d)+ZPE) method. As the electronegativity, χ, of the substituent R increases, the coordination bond energies, D(Si← N(O)), increase from 4.7 to 25.9 kcal mol−1 for the complexes of R2Si=CH2 with NH3, from 10.6 to 37.1 kcal mol−1 for the complexes with Me3N, and from 5.0 to 22.2 kcal mol−1 for the complexes with THF. The n-donor ability changes as follows: THF ≤ NH3 < Me3N. The calculated barrier to hindered internal rotation about the silicon—carbon double bond was used as a measure of the Si=C π-bond energy. As χ increases, the rotational barriers decrease from 18.9 to 5.2 kcal mol−1 for the complexes with NH3 and from 16.9 to 5.7 kcal mol−1 for the complexes with Me3N. The lowering of rotational barriers occurs in parallel to the decrease in D π(Si=C) we have established earlier for free silenes. On the average, the D π(Si=C) energy decreases by ∼25 kcal mol−1 for NH3· R2Si=CH2 and Me3N·R2Si=CH2. The D(Si←N) values for the R2Si=CH2· 2Me3N complexes are 11.4 (R = H) and 24.3 kcal mol−1 (R = F). sp2-Hybridized silicon atom can form transannular coordination bonds in 1,1-bis[N-(dimethylamino)acetimidato]silene (6). The open form (I) of molecule 6 is 35.1 and 43.5 kcal mol−1 less stable than the cyclic (II, one transannular Si←N bond) and bicyclic (III, two transannular Si←N bonds) forms of this molecule, respectively. The D(Si←N) energy for structure III was estimated at 21.8 kcal mol−1. Dedicated to Academician N. S. Zefirov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1952–1961, September, 2005.  相似文献   

11.
Ruthenium carbonyl triphenylphosphine complexes Ru2(CO)6−n (PPh3) n {μ-C(CH=CHPh)C(Ph)C(CH=CHPh)C(Ph)} (n=1, 2) were obtained by the reaction of complex Ru2(CO)6{μ-C(CH=CHPh)C(Ph)C(CH=CHPh)C(Ph)} containing the ruthenacyclopentadiene moiety with PPh3 in refluxing toluene. The complexes were characterized by IR and by1H,13C, and31P NMR spectroscopy, and by X-ray analysis. The monophosphine derivative is identical to the complex formed by fragmentation of the Ru3(CO)8(PPh3){μ-C(CH=CHPh)C(Ph)C(CH=CHPh)C(Ph)} cluster and contains the PPh3 ligand at the ruthenium atom of the ruthenacyclopentadiene moiety. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1836–1843, September, 1998  相似文献   

12.
The reaction of copper(I) chloride with Htbo (1,4,6-triazabicyclo[3.3.0]oct-4-ene) under reflux in THF with oxidation by oxygen, produces a neutral cluster comprising two oxo-tetra-copper(II) units connected by six tbo bridges three of them bind two and the other three bind four metals; each unit also contains three chlorine bridges and a Htbo terminal ligand. Two different X-ray crystal structures (1a, 1b) have been determined and the magnetic behavior has been studied. The molar magnetic susceptibility measurements indicate strong exchange interactions within an oxo cluster with coupling constants of J 1 = −163 cm−1 and J 2 = −1.1 cm−1, and a weak interaction across the guanidinate bridges of J 3 = −5.2 cm−1 of the octa-CuII cluster.  相似文献   

13.
Reaction of 2-(phenylazo)pyridine (pap) with [Ru(PPh3)3X2] (X = Cl, Br) in dichloromethane solution affords [Ru(PPh3)2(pap)X2]. These diamagnetic complexes exhibit a weakdd transition and two intense MLCT transitions in the visible region. In dichloromethane solution they display a one-electron reduction of pap near − 0.90 V vs SCE and a reversible ruthenium(II)-ruthenium(III) oxidation near 0.70 V vs SCE. The [RuIII(PPh3)2(pap)Cl2]+ complex cation, generated by coulometric oxidation of [Ru(PPh3)2(pap)Cl2], shows two intense LMCT transitions in the visible region. It oxidizes N,N-dimethylaniline and [RuII(bpy)2Cl2] (bpy = 2,2′-bipyridine) to produce N,N,N′,N′-tetramethylbenzidine and [RuIII(bpy)2Cl2]+ respectively. Reaction of [Ru(PPh3)2(pap)X2] with Ag+ in ethanol produces [Ru(PPh3)2(pap)(EtOH)2]2+ which upon further reaction with L (L = pap, bpy, acetylacetonate ion(acac) and oxalate ion (ox2−)) gives complexes of type [Ru(PPh3)2(pap)(L)]n+ (n = 0, 1, 2). All these diamagnetic complexes show a weakdd transition and several intense MLCT transitions in the visible region. The ruthenium(II)-ruthenium(III) oxidation potential decreases in the order (of L): pap > bpy > acac > ox2−. Reductions of the coordinated pap and bpy are also observed.  相似文献   

14.
The reactions of ytterbium naphthalene complex C10H8Yb(THF)2 with 2-cyclopentadienylethanol, 1-cyclopentadienylpropan-2-ol, 3-cyclopentadienyl-1-butoxypropan-2-ol, and cyclopentadienyldimethylsilyl-tert-butylamine were studied. The bivalent ytterbium complexes with chelate bifunctional cyclopentadienyl ligands [(η5−C5H5)CH2CH21−O)]Yb(THF), [(η5−C5H5)CH2CH21−O)]Yb(DME). [(η5−C5H5)CH2CH(Me)(η1−O)]Yb(THF), [(η5−C5H5)CH2CH(CH2OC4H9)(η1−O)]Yb(THF), and [(η5−C5H5)SiMe21−N(Bu1))]Yb(THF) were obtained and characterized. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 742–745, April, 2000.  相似文献   

15.
Dinuclear iron tetranitrosyl complex with the composition [Fe2(SPh)2(NO)4] (1) was synthesized and its single crystals and polycrystals were studied by X-ray diffraction, IR spectroscopy, and elemental analysis. The decomposition products of complex 1 were investigated by electrochemical method and mass spectrometry. The mass spectrum of a solution of complex 1 shows two groups of ions: the primary decomposition products of 1 in solution (the complex ions [Fe(SPh)(NO)2(NO2)], [Fe(SPh)2(NO)], and [Fe(SPh)2(NO)2]) and a series of the ions [FeO2 + n(NO)] and [FeO3 + n(NO)] (n = 0–4), which are formed in secondary reactions. The structures of the complexes, which were formed through the Fe-NO bond dissociation and the replacement of the NO ligand by aqua and oxygen ligands in complex 1, and the structure of the complex [FeO3] were studied by quantum chemical modeling.  相似文献   

16.
Six new μ-terephthalato iron(III) binuclear complexes have been prepared and identified: [Fe2(TPHA)(L)4]-(ClO4)4 [L = 2,2′-bipyridine (bpy); 1,10-phenanthroline (phen); 4,4′-dimethyl-2,2′-bipyridine (Me2bpy); 5-methyl-1,10-phenanthroline (Me-phen); 5-chloro-1,10-phenanthroline (Cl-phen) and 5-nitro-1,10-phenanthroline (NO2-phen)]; where TPHA = the terephthalate dianion. Based on the elemental analyses, molar conductance and magnetic moments of room-temperature measurements, and spectroscopic studies, extended TPHA-bridged structures consisting of two iron(III) ions, each in an octahedral environment, are proposed for these complexes. The [Fe2(TPHA)(Me-phen)4](ClO4)4 (1) and [Fe2(TPHA)(phen)4](ClO4)4 (2) complexes were characterized by variable temperature magnetic susceptibility (4–300 K) measurements and the observed data were successfully simulated by the equation based on the spin Hamiltonian operator, Ĥ = −2 1 Ŝ 2, giving the exchange integrals J = −1.05 cm−1 for (1) and J = −9.28 cm−1 for (2). This result indicates the presence of a weak antiferromagnetic spin-exchange interaction between the metal ions within each molecule. The influence of the terminal ligand methyl substituents on magnetic interactions between the metals is also discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Diacetylplatinum(II) complexes [Pt(COMe)2(N^N)] (N^N = bpy, 3a; 4,4′-t-Bu2-bpy, 3b) were found to undergo oxidative addition reactions with organyl halides. The reaction of 3a with methyl iodide and propargyl bromide led to the formation of the cis addition products (OC-6-34)-[Pt(COMe)2(R)X(bpy)] (R = Me, X = I, 4a; CH2C≡CH, X = Br, 4k). Analogous reactions of 3a with ethyl iodide, benzyl bromide, and substituted benzyl bromides, 3-(bromomethyl)pyridine, 2-(bromomethyl)thiophene, allyl bromide, and cyclohex-2-enyl bromide led to exclusive formation of the trans addition products (OC-6-43)-[Pt(COMe)2(R)X(bpy)] (X = I, R = Et, 4b; X = Br, R = CH2C6H5, 4c; CH2C6H4(o-Br), 4d; CH2C6H4(p-COOH), 4e; CH2-3-py (3-pyridylmethyl), 4f; CH2-2-tp (2-thiophenylmethyl), 4g; CH2CH=CH2, 4h; c-hex-2-enyl (cyclohex-2-enyl), 4i). All complexes 4 were characterized by microanalysis, 1H and 13C NMR and IR spectroscopy. Additionally, complexes 4a, 4f, and 4g were characterized by single-crystal X-ray diffraction analyses. Reactions of 3a and 3b with o-, m- and p-bis(bromomethyl)benzene, respectively, led to the formation of dinuclear platinum(IV) complexes [{Pt(COMe)2Br(N^N)}2-{μ-(CH2)2C6H4}] (5). These complexes were characterized by microanalysis, IR spectroscopy, and depending on their solubility by 1H and 13C NMR spectroscopy, too. A single-crystal X-ray diffraction analysis of complex [{Pt(COMe)2Br(bpy)}2{μ-m-(CH2)2C6H4}] (5b) confirmed its dinuclear composition. The solid-state structures of 4a, 4f, 4g, and 5b are discussed in terms of C–H···O and O–H···O hydrogen bonds as well as π–π stacking between aromatic rings.  相似文献   

18.
A bidentate ligand, 5-chloro-2-(phenylazo)pyridine (Clazpy), and its two polypyridyl ruthenium(II) complexes, [Ru(Clazpy)2bpy]Cl2·7H2O (1) and [Ru(Clazpy)2phen]Cl2·8H2O (2), were synthesized and characterized. The DNA-binding properties of these complexes with DNA, the breast cancer susceptibility gene 1 (BRCA1), and the pBIND plasmid DNA were probed by photocleavage, electronic absorption titration, ethidium bromide quenching, and thermal denaturation. Both complexes were found to bind to the BRCA1 fragment through the intercalative mode into the base pairs of DNA, and the DNA-binding constants (Kb) for 1 and 2 were 7.0 × 104 M−1 and 5.1 × 105 M−1, respectively. In addition, both complexes enhanced the single-stranded cleavage of the plasmid DNA. Under comparable experimental conditions, 2 cleaved DNA more effectively than 1, in a dose–response manner. The data indicated that the binding affinity of these two complexes to DNA was dependent on the aromatic planarity and hydrophobicity of the intercalative polypyridyl ligand.  相似文献   

19.
A new complex based on monosubstituted Keggin anions, formulated as [Hpy]2{[Co(4,4′-Hbpy)2(H2O)2][SiCoW11O39]} 1, was hydrothermally synthesized and structurally characterized by elemental analysis, single-crystal X-ray diffraction, IR, XRD and TG. Complex 1 exhibits a 2D layered structure constructed by bridging {SiCoW11O39}n6n− chains via [Co(4,4′-Hbpy)2(H2O)2]4+ fragments. The electrocatalysis of 1-CPEs (carbon paste electrodes) was performed in 0.5 M sodium acetate buffer (pH 4.5) containing 1 mM [Ru(bpy)3]2+ solution. It is found that 1-CPEs are active to the electrocatalytic redox of [Ru(bpy)3]3+/[Ru(bpy)3]2+ and the electrocatalytic oxidation of H2O into O2.  相似文献   

20.
The reaction of Os3(μ-Cl)2(CO)10 (1) with Ph2PCH2PPh2 (dppm) in a toluene solution at 65°C results in novel osmium complexes [Os3(μ-Cl)2(CO)9]2(dppm) (2) and [Os3(μ-Cl)2(CO)8]2(dppm)2 (3). Compounds 2 and 3 were characterized by1H and31P NMR, and IR spectroscopy and their structures were established by X-ray analysis. In both compounds, dppm is a bridging ligand between the two cluster units. Molecule3 can be considered as an unusual 12-membered macrocycle containing C, P, Cl, and Os atoms in the ring. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1844–1851, September, 1998.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号