首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We study a one-dimensional gas of fermionic atoms interacting via an s-wave molecular Feshbach resonance. At low energies the system is characterized by two Josephson-coupled Luttinger liquids, corresponding to paired atomic and molecular superfluids. We show that, in contrast to higher dimensions, the system exhibits a quantum phase transition from a phase in which the two superfluids are locked together to one in which, at low energies, quantum fluctuations suppress the Feshbach resonance (Josephson) coupling, effectively decoupling the molecular and atomic superfluids. Experimental signatures of this quantum transition include the appearance of an out-of-phase gapless mode (in addition to the standard gapless in-phase mode) in the spectrum of the decoupled superfluid phase and a discontinuous change in the molecular momentum distribution function.  相似文献   

2.
We study properties of Wigner crystal in snaked nanochannels and show that they are characterized by a conducting sliding phase at low charge densities and an insulating pinned phase emerging above a certain critical charge density. We trace parallels between this model problem and the Little suggestion for electron transport in organic molecules. We also show that in the presence of periodic potential inside the snaked channel the sliding phase exists only inside a certain window of electron densities that has similarities with a pressure dependence of conductivity in organic conductors. Our studies show emergence of dynamical glassy phase in a purely periodic potential in the absence of any disorder that can explain enormously slow variations of resistivity in organic conductors. Finally we discuss the KAM concept of superfluidity induced by repulsive Coulomb interaction between electrons. We argue that the transition from the sliding KAM phase to the pinned Aubry phase corresponds to the superfluid-insulator transition.  相似文献   

3.
Strong cooperative interactions occur between four different broken symmetries involving charge ordering and bond distortions in the quarter-filled correlated zigzag electron ladder. The ground state is singlet, with spin gap several times larger than in the spin-Peierls state of the one-dimensional quarter-filled chain with the same parameters. We propose the quarter-filled zigzag electron ladder model for several different organic charge transfer solids with coupled pairs of quasi-one-dimensional stacks, in which the spin-gap transition temperatures are unusually high.  相似文献   

4.
A system of two-dimensional electrons and holes ha s been investigated in a strong magnetic field, when it is sufficient to take into account only the ground Landau level. It has been shown that the interaction of electrons and holes can lead to an ordered state. In this problem, the exchange interaction in electron and hole subsystems is significant. The following two cases have been considered: (a) there are one electron and one hole valleys, and at some magnetic field strength, there exists an ordered state, as in an excitonic insulator; and (b) there exist one electron and two equivalent hole valleys (as in the experiment performed by Kvon et al. [1]), and the hole system has an ordered state of the Stoner ferromagnetic type in a specific range of magnetic field strengths. The spectra of elementary excitations of the Bose and Fermi types have been obtained. The Fermi excitations have a gap in the energy spectrum, whereas the Bose excitations in the ordered states begin with zero (to these excitations there corresponds an electric dipole moment). The self-consistent field approximation has been used, which is exact when the numbers of electrons and holes are equal to each other.  相似文献   

5.
We investigate, in one spatial dimension, the quantum mechanical tunneling of an exciton incident upon a heterostructure barrier. We model the relative motion eigenstates of the exciton using a form of the one-dimensional hydrogen atom which avoids difficulties previously associated with 1D hydrogenic states. We obtain probabilities of reflection and transmission using the method of variable transmission and reflection amplitudes. Our calculations may be broadly divided into two sets. In the first set, we consider general qualitative aspects of exciton tunneling, such as the effect of different effective masses for electrons and holes and a relative difference in electron and hole barrier strengths. The second set models the tunneling of an exciton in a GaAs/Al(x)Ga(1-x)As heterostructure. In these calculations we find that, for energies such that the two lowest exciton states are coupled, the probability spectrum for transition from the ground state to the first excited state is identical to that for transition from the first excited state to the ground state. In addition, narrow peaks in the probability spectrum for transition are observed across this energy range for low dopant concentration x. Other interesting phenomena correlated with these peaks in the transition probability are reported.  相似文献   

6.
A transition to a new, presumably unstable, state of a two-dimensional (2D) electron crystal above liquid helium has been discovered at temperatures well below the melting point. The transition is manifested as an abrupt increase in the active component of the inverse conductivity of the crystal with a decrease in the potential pressing of the electrons to the surface. The state can be destroyed by the in-plane electric field of a sufficiently high amplitude. The new state is supposed to be a 2D electron glass.  相似文献   

7.
8.
We consider a spin-1/2 tube (a three-leg ladder with periodic boundary conditions) with a Hamiltonian given by two projection operators-one on the triangles and the other on the square plaquettes on the side of the tube-that can be written in terms of Heisenberg and four-spin ring exchange interactions. We identify 3 phases: (i)?for strongly antiferromagnetic exchange on the triangles, an exact ground state with a gapped spectrum can be given as an alternation of spin and chirality singlet bonds between nearest triangles; (ii)?for ferromagnetic exchange on the triangles, we recover the phase of the spin-3/2 Heisenberg chain; (iii)?between these two phases, a gapless incommensurate phase exists. We construct an exact ground state with two deconfined domain walls and a gapless excitation spectrum at the quantum phase transition point between the incommensurate and dimerized phases.  相似文献   

9.
We reexamine the ground-state phase diagram of the one-dimensional half-filled Hubbard model with on-site and nearest-neighbor repulsive interactions. We calculate second-order corrections to coupling constants in the weak-coupling renormalization-group approach ( g-ology) to show that the bond-charge-density-wave (BCDW) phase exists for weak couplings in between the charge-density-wave (CDW) and spin-density-wave (SDW) phases. We find that the umklapp scattering of parallel-spin electrons destabilizes the BCDW state and gives rise to a bicritical point where the CDW-BCDW and SDW-BCDW continuous-transition lines merge into the CDW-SDW first-order transition line.  相似文献   

10.
We study the spin-polarized transport induced by photoirradiation in zigzag silicene nanosystem, based on tight-binding approach, Green's function method and Landauer–Büttiker formula. By applying strong circular polarized light, silicene nanosystem can be transformed into a quantum Hall insulator, where the spin-down subband is gapped while the spin-up subband persists gapless edge state. Therefore, the dc conductance is dominated by the spin-up electrons, and the spin polarization can reach almost 100% around the Fermi energy. The spatial-resolved local density of states confirm that the spin-up electrons transport at two edges of the nanosystem in opposite current directions. Furthermore, because of the topological origin of the edge state, the spin-polarized transport is very robust against the size change of the nanosystem.  相似文献   

11.
We have performed an angle-resolved two-photon and three-photon photoemission study of the Ag(111) surface employing ultrashort laser pulses as the excitation source. We show the presence of multi-photon resonances between electronic states at selected points of the Brillouin zone which appear in the high-order photoemission spectral region. We observe clear signatures of electronic band structure effects of the Ag crystal in above-threshold photoemission (ATP) processes, identifying two types of transitions, which either proceed via non-resonant multi-photon excitation from an occupied initial state, or involve a real intermediate state located above the vacuum level of the solid directly influencing the ATP process. For this latter class of phenomena, we suggest that electron populations created by incoherent processes give a contribution to the multi-photon transition, possibly allowing us to trace the transmission of photoexcited electrons through the crystal.  相似文献   

12.
We report Monte Carlo simulations of a system of rigid zigzag-shaped molecules that demonstrate that simple excluded-volume interactions are sufficient to produce a fluid tilted lamellar [smectic C (SmC)] liquid crystal phase. The molecules are composed of three rigidly linked hard spherocylinders arranged in a zigzag fashion. By varying the zigzag angle we have mapped out the whole phase diagram as a function of pressure and zigzag angle Psi. For Psi between 35 degrees and 80 degrees our model simulation exhibits the SmC phase. This is the first conclusive evidence where steric interactions arising out of molecular shape alone induce the occurrence of the SmC phase for a wide range of zigzag angles. For smaller Psi, a transition from tilted crystal to crystal is observed.  相似文献   

13.
We study the possibility of coexistence in a two component fermionic system of a superfluid state with a metallic-like state with gapless excitations at a Fermi surface. We consider a two-component system with mixing (hybridization) between them and attractive interactions between only one type of quasi-particles. Besides a conventional BCS regime, we find for sufficiently strong interactions a superfluid state of Bose condensed pairs at zero temperature. We investigate whether these pairs can coexist with a metallic-like state characterized by gapless electronic excitations. The zero temperature phase diagram as a function of the strength of the attractive interaction and the mixing is obtained. For simplicity and to clarify the nature of the quantum phase diagram we consider the case of s-wave pairing.  相似文献   

14.
It is argued that both transitions observed in 50% doped manganites, at the Néel temperature (T(N)) and the so-called charge ordering temperature (T(CO)), are magnetic. T(N) corresponds to the order-disorder transition, which takes place between ferromagnetic zigzag chains, while the coherent motion of spins within the chains is destroyed only around T(CO). The magnetic structure below T(CO) is highly anisotropic. It is dressed by the lattice distortion and leads to the huge anisotropy of the electronic structure, which explains stability of this state as well as the form of the charge-orbital pattern above T(N). The type of phase transition at T=T(N) is determined by lattice interactions.  相似文献   

15.
We present detailed electron-spin resonance investigations on single crystals of the one-dimensional vanadium-oxide bronze beta-Na(1/3)V2O5. From the angular dependence of the g value it can be concluded that the electrons are primarily located on the V1 zigzag chains. The anisotropy of the linewidth, which is determined by the intrachain symmetric anisotropic exchange interaction, favors statistic electron distribution in the metallic and blockwise charge-order in the insulating phase. The temperature dependence of the linewidth indicates the opening of a charge gap at the metal-to-insulator transition at T(MI)=132 K.  相似文献   

16.
We studied the electronic structure and optic absorption of phosphorene (monolayer of black phosphorus) under strain. Strain was found to be a powerful tool for the band structure engineering. The in-plane strain in armchair or zigzag direction changes the effective mass components along both directions, while the vertical strain only has significant effect on the effective mass in the armchair direction. The band gap is narrowed by compressive in-plane strain and tensile vertical strain. Under certain strain configurations, the gap is closed and the energy band evolves to the semi-Dirac type: the dispersion is linear in the armchair direction and is gapless quadratic in the zigzag direction. The band-edge optic absorption is completely polarized along the armchair direction, and the polarization rate is reduced when the photon energy increases. Strain not only changes the absorption edge (the smallest photon energy for electron transition), but also the absorption polarization.  相似文献   

17.
Starting from a model of an indirect optical semiconductor with two bands, the electron states are calculated in the presence of an additional periodic one-dimensional potential (superlattice) in the semiconductor material. These states are used to determine the transition probability connected with the absorption of a photon. This transition corresponds to an optical direct transition — no phonon takes part in this process. The optical direct and optical indirect transitions are compared. For optical frequencies near the band gap one expects only direct transitions, whereby the optical indirect transitions may be neglected.  相似文献   

18.
朱瑞 《中国物理快报》2007,24(3):797-799
The Bose Hubbard model describing interacting bosons in an optical lattice is reduced to a simple spin-1 XY model with single-ion anisotropy in the vicinity of the Mott phase. In the strong coupling Mott insulating regime, we propose a mean t~eld theory based on a constraint SU(3) pseudo-boson representation on the effective model and discuss the excitation spectra and the phase transition to the superfluid state. Further to the superfluid phase, we use the coherent-state approach to derive the collective excitation modes. It is found that the Mort phase has two degenerate gapped quadratic excitation spectra which graduate into two degenerate gapless linear ones at the transition point, and one gapless linear mode with one gapped quadratic mode in the superfluid phase.  相似文献   

19.
We study the spin ordering within the three-leg ladders present in the oxyborate Fe3O2BO3 consisting of localized classical spins interacting with conduction electrons (one electron per rung). We also consider the competition with antiferromagnetic superexchange interactions to determine the magnetic phase diagram. Besides a ferromagnetic phase we find (i) a phase with ferromagnetic rungs ordered antiferromagnetically and (ii) a zigzag canted spin ordering along the legs. We also determine the induced charge ordering within the different phases and the interplay with lattice instability. Our model is discussed in connection with the lattice dimerization transition observed in this system, emphasizing the role of the magnetic structure.  相似文献   

20.
Pressure-induced superconductivity in a spin-ladder cuprate Sr2Ca12Cu24O41 has not been studied on a microscopic level thus far although the superconductivity was already discovered in 1996. We have improved the high-pressure technique using a large high-quality crystal, and succeeded in studying the superconductivity using 63Cu nuclear magnetic resonance. We found that the anomalous metallic state reflecting the spin-ladder structure is realized and the superconductivity possesses an s-wave-like character in the meaning that a finite gap exists in the quasiparticle excitation: At a pressure of 3.5 GPa, we observed two excitation modes in the normal state from the relaxation rate T-11. One gives rise to an activation-type component in T-11, and the other T-linear component linking directly with the superconductivity. This gapless mode likely arises from free motion of holon-spinon bound states appearing by hole doping, and the pairing of them likely causes the superconductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号