首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We report the observation of dynamo action in the von Kármán sodium experiment, i.e., the generation of a magnetic field by a strongly turbulent swirling flow of liquid sodium. Both mean and fluctuating parts of the field are studied. The dynamo threshold corresponds to a magnetic Reynolds number R(m) approximately 30. A mean magnetic field of the order of 40 G is observed 30% above threshold at the flow lateral boundary. The rms fluctuations are larger than the corresponding mean value for two of the components. The scaling of the mean square magnetic field is compared to a prediction previously made for high Reynolds number flows.  相似文献   

2.
The magnetic field measured in the Madison dynamo experiment shows intermittent periods of growth when an axial magnetic field is applied. The geometry of the intermittent field is consistent with the fastest-growing magnetic eigenmode predicted by kinematic dynamo theory using a laminar model of the mean flow. Though the eigenmodes of the mean flow are decaying, it is postulated that turbulent fluctuations of the velocity field change the flow geometry such that the eigenmode growth rate is temporarily positive. Therefore, it is expected that a characteristic of the onset of a turbulent dynamo is magnetic intermittency.  相似文献   

3.
An axisymmetric magnetic field is applied to a spherical, turbulent flow of liquid sodium. An induced magnetic dipole moment is measured which cannot be generated by the interaction of the axisymmetric mean flow with the applied field, indicating the presence of a turbulent electromotive force. It is shown that the induced dipole moment should vanish for any axisymmetric laminar flow. Also observed is the production of toroidal magnetic field from applied poloidal magnetic field (the omega effect). Its potential role in the production of the induced dipole is discussed.  相似文献   

4.
A numerical study of the magnetic induction equation has been performed on von Kármán type flows. These flows are generated by two co-axial counter-rotating propellers in cylindrical containers. Such devices are currently used in the von Kármán sodium (VKS) experiment designed to study dynamo action in an unconstrained flow. The mean velocity fields have been measured for different configurations and are introduced in a periodic cylindrical kinematic dynamo code. Depending on the driving configuration, on the poloidal to toroidal flow ratio and on the conductivity of boundaries, some flows are observed to sustain growing magnetic fields for magnetic Reynolds numbers accessible to a sodium experiment. The response of the flow to an external magnetic field has also been studied: The results are in excellent agreement with experimental results in the single propeller case but can differ in the two propellers case.  相似文献   

5.
The magnetic field induced by the nonstationary screw flow of gallium in a toroidal channel has been investigated experimentally using a gallium prototype of the sodium apparatus developed in the frame of the experimental dynamo program at the Institute of Continuous Media Mechanics, Perm, Russia. The experimental set-up is a rapidly rotating toroidal channel subjected to abrupt braking. The screw flow is initiated by inertial forces pushing liquid gallium through diverters. The regular structure of the induced magnetic field is generated about 0.1 s after the stop of the channel and persists up to 1 s. The induced field is measured by sensors placed outside the channel. The inductive effects observed are attributed to the mean screw flow. The decay laws of the induced regular magnetic field and turbulent magnetic fluctuations are studied.Received: 27 August 2004, Published online: 5 November 2004PACS: 47.65. + a Magnetohydrodynamics and electrohydrodynamics - 07.55.Dd Generation of magnetic fields  相似文献   

6.
The conservation equations of mass, momentum, and energy in differential form, Ohm's law, and the experimentally determined dependence of the interruption capability of the arc on current shape are employed to obtain similarity relations for high pressure electric arcs in forced axial flow around current zero. The similarity relations are then applied to assess the validity of laminar and turbulent flow models for the arc by comparing model predictions with experiment. It is found that the laminar flow model quite often predicts arc behavior contrary to experiment, while the turbulent flow model predictions are much more consistent with experiment. Moreover, the similarity relations should also be useful in exploring arc behavior under circumstances not discussed in this work.  相似文献   

7.
Rayleigh-Taylor instabilities (RTI) in inertial confinement fusion implosions are expected to generate magnetic fields. A Hall-MHD model is used to study the field generation by 2D single-mode and multimode RTI in a stratified two-fluid plasma. Self-generated magnetic fields are predicted and these fields grow as the RTI progresses via the ?n(e)×?T(e) term in the generalized Ohm's law. Scaling studies are performed to determine the growth of the self-generated magnetic field as a function of density, acceleration, Atwood number, and perturbation wavelength.  相似文献   

8.
We report the observation of several dynamical regimes of the magnetic field generated by a turbulent flow of liquid sodium (VKS experiment). Stationary dynamos, transitions to relaxation cycles or to intermittent bursts, and random field reversals occur in a fairly small range of parameters. Large scale dynamics of the magnetic field result from the interactions of a few modes. The low dimensional nature of these dynamics is not smeared out by the very strong turbulent fluctuations of the flow.  相似文献   

9.
The behavior of vacuum arcs under the influence of unipolar axial magnetic field (AMF) has been investigated. In experimental investigations, the vacuum arc mode is studied at different arc currents by using high-speed charge-coupled device (CCD) video images. In spite of the AMF, first sign of arc constriction appears at relatively small currents of about 15 kA (RMS). Three different arc modes were found. Based on generalized Ohm's law, the current density distribution in the vacuum arc with unipolar axial magnetic field is computed using three-dimensional finite-element method (FEM) software. The calculated current distribution is confirmed by the vacuum arc appearance taken from CCD video film. The distribution of AMF can be optimized by such experiments and theoretical analysis.  相似文献   

10.
We study the effect of a turbulent flow of liquid sodium generated in the von Kármán geometry, on the localized field of a magnet placed close to the frontier of the flow. We observe that the field can be transported by the flow on distances larger than its integral length scale. In the most turbulent configurations, the mean value of the field advected at large distance vanishes. However, the rms value of the fluctuations increases linearly with the magnetic Reynolds number. The advected field is strongly intermittent.  相似文献   

11.
Quanming Lu 《中国物理 B》2022,31(8):89401-089401
Magnetic reconnection underlies the physical mechanism of explosive phenomena in the solar atmosphere and planetary magnetospheres, where plasma is usually collisionless. In the standard model of collisionless magnetic reconnection, the diffusion region consists of two substructures: an electron diffusion region is embedded in an ion diffusion region, in which their scales are based on the electron and ion inertial lengths. In the ion diffusion region, ions are unfrozen in the magnetic fields while electrons are magnetized. The resulted Hall effect from the different motions between ions and electrons leads to the production of the in-plane currents, and then generates the quadrupolar structure of out-of-plane magnetic field. In the electron diffusion region, even electrons become unfrozen in the magnetic fields, and the reconnection electric field is contributed by the off-diagonal electron pressure terms in the generalized Ohm's law. The reconnection rate is insensitive to the specific mechanism to break the frozen-in condition, and is on the order of 0.1. In recent years, the launching of Cluster, THEMIS, MMS, and other spacecraft has provided us opportunities to study collisionless magnetic reconnection in the Earth's magnetosphere, and to verify and extend more insights on the standard model of collisionless magnetic reconnection. In this paper, we will review what we have learned beyond the standard model with the help of observations from these spacecraft as well as kinetic simulations.  相似文献   

12.
王玉梅  任俊峰  原晓波  窦兆涛  胡贵超 《中国物理 B》2012,21(10):108508-108508
From experimental results of spin polarized injection and transport in organic semiconductors(OSCs),we theoretically study the current spin polarization and magnetoresistance under an electric and a magnetic field in a ferromagnetic/organic semiconductor/ferromagnetic(FM/OSC/FM) sandwich structure according to the spin drift-diffusion theory and Ohm’s law.From the calculations,it is found that the interfacial current spin polarization is enhanced by several orders of magnitude through tuning the magnetic and electric fields by taking into account the specific characteristics of OSC.Furthermore,the effects of the electric and magnetic fields on the magnetoresistance are also discussed in the sandwich structure.  相似文献   

13.
We investigate the magnetic energy transfer from the fluid to kinetic scales and dissipation processes using three-dimensional fully kinetic particle-in-cell plasma simulations. The nonlinear evolution of a sheet pinch is studied where we show that it exhibits both fluid scale global relaxation and kinetic scale collisionless reconnection at multiple resonant surfaces. The interactions among collisionless tearing modes destroy the original flux surfaces and produce stochastic fields, along with generating sheets and filaments of intensified currents. In addition, the magnetic energy is transferred from the original shear length scale both to the large scales due to the global relaxation and to the smaller, kinetic scales for dissipation. The dissipation is dominated by the thermal or pressure effect in the generalized Ohm's law, and electrons are preferentially accelerated.  相似文献   

14.
Various aspects of the influence of an external magnetic field on turbulent flow of a conducting fluid are investigated. The distributions of electric variables are determined for weak magnetic fields (both the electric field and the current have nonzero values in this case). For very strong magnetic fields it is shown that turbulent motion acquires a two-dimensional character. The emergence of an electric current component perpendicular to the flow and to the magnetic field is described in the case of a temperature-stratified medium in the presence of turbulent heat flux. Zh. éksp. Teor. Fiz. 111, 528–535 (February 1997)  相似文献   

15.
We report an experimental study of the magnetic field B--> induced by a turbulent swirling flow of liquid sodium submitted to a transverse magnetic field B-->(0). We show that the induced field can behave nonlinearly as a function of the magnetic Reynolds number, R(m). At low R(m), the induced mean field along the axis of the flow, , and the one parallel to B-->(0), , first behave like R(2)(m), whereas the third component, , is linear in R(m). The sign of is determined by the flow helicity. At higher R(m), B--> strongly depends on the local geometry of the mean flow: decreases to zero in the core of the swirling flow but remains finite outside. We compare the experimental results with the computed magnetic induction due to the mean flow alone.  相似文献   

16.
Electric and magnetic field observations on the Polar satellite at the subsolar magnetopause show that the magnetopause current is often striated. The largest of the resulting current channels are interpreted as electron diffusion regions because their widths are several electron skin depths and the electron flow U(e) within them does not satisfy E-->+U-->(e)xB-->=0. The data suggest that the magnetopause contains many such electron diffusion regions and that they are required because E-->xB-->/B(2) drifting electrons cannot carry the large filamentary currents imposed on the local plasma. The most probable interpretation of E-->+U-->(e)xB--> not equal 0 is that the pressure term on the right side of the generalized Ohm's law balances this inequality.  相似文献   

17.
In this paper, a new set of the evolution equations for the helicity of the mean magnetic field and the mean helicity of the fluctuating magnetic field is derived from the Maxwell equations and the generalized Ohm's law with the dynamo action. It is shown that there exist two kinds of the dynamo-driven magnetic helicity transport. One of them makes the mean magnetic field helicity transfer to the fluctuating magnetic field, yielding an anomalous loop voltage. The other makes the fluctuating magnetic field helicity transfer to the mean magnetic field, which provides a convincing evidence for the existence of the dynamo current. Therefore, the two kinds of the magnetic helicity transport describe the mutual conversion between the regular and irregular motions. The formulas of the loop voltage and the dynamo current are given. In particular, we give out the formula of the dynamo current-generated equilibrium magnetic field which provides a concrete mode of the magnetic field creation and maintenance in both astrophysical and laboratory (e.g., reversed-field pinch) plasmas.  相似文献   

18.
The general relativistic kinetic theory including the effect of a stationary gravitational field is applied to the electromagnetic transport processes in conductors. Then it is applied to derive the general relativistic Ohm's law where the gravitomagnetic terms are incorporated. The total electric charge quantity and charge distribution inside conductors carrying conduction current in some relativistic cases are considered. The general relativistic Ohm's law is applied to predict new gravitomagnetic and gyroscopic effects which can, in principle, be used to detect the Lense-Thirring and rotational fields.  相似文献   

19.
20.
We present multipoint spacecraft observations at the dayside magnetopause of a magnetic reconnection separatrix region. This region separates two plasmas with significantly different temperatures and densities, at a large distance from the X line. We identify which terms in the generalized Ohm's law balance the observed electric field throughout the separatrix region. The electric field inside a thin approximately c/omega pi Hall layer is balanced by the j x B/ne term while other terms dominate elsewhere. On the low density side of the region we observe a density cavity which forms due to the escape of magnetospheric electrons along the newly opened field lines. The perpendicular electric field inside the cavity constitutes a potential jump of several kV. The observed potential jump and field aligned currents can be responsible for strong aurora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号