首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Detailed studies of the mechanism of surface‐enhanced (resonance) Raman spectroscopy (SE(R)RS), and its applications, place a number of demands on the properties of SERS scatterers. With large Raman cross‐sections, versatile synthetic chemistry and complete lack of fluorescence, free dipyrrins meet these demands but the Raman and SE(R)RS spectroscopy of free dipyrrins is largely unknown. The first study of the Raman spectroscopy of free dipyrrins is therefore presented in this work. The nonresonant Raman, resonant Raman and surface‐enhanced Raman spectra of a typical meso aryl‐substituted‐dipyrrin are reported. Absolute differential cross‐sections are obtained for excitation wavelengths in the near infrared and visible region, in solution phase and for dipyrrin adsorbed on the surface of silver nanoparticles. Raman enhancement factors for SERRS and resonance Raman are calculated from the observed differential cross‐sections. The magnitudes of the resonantly enhanced cross‐sections are similar to those recently reported for strong SERS dyes such as Rhodamine 6G and Crystal Violet. Free dipyrrins offer the advantages of existing SERS dyes but without the drawback of strong fluorescence. Free dipyrrins should therefore find applications in all areas of Raman spectroscopy including fundamental studies of the mechanisms of SERS and bioanalytical and environmental applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
We present experimental results to quantify and optimize the surface‐enhanced Raman scattering (SERS) activity of naturally grown silver nanoparticles. Ag nanoparticle ensembles with mean equivalent radii ranging from 10.6 to 20.3 nm were prepared under ultrahigh vacuum conditions by Volmer–Weber growth on quartz plates. A tuning of the localized surface plasmon polariton resonance wavelength from 453 to 548 nm was performed by varying the morphology of the silver nanoparticles. The dependence of the SERS activity on the plasmon resonance wavelength was investigated with a Raman set‐up containing a microsystem light source with an emission line at 488 nm. Shifted excitation Raman difference spectroscopy was applied to remove the fluorescence‐based background from the SERS spectra of pyrene in water using two slightly different emission wavelengths (487.61 and 487.91 nm) of the microsystem light source. We demonstrate that the Raman activities for all SERS substrates are available in the nanomolar range in a water sample. However, the Raman activity crucially depends on the plasmon resonance wavelength of the nanoparticle ensembles. Although for an on‐resonance ensemble the limit of detection for pyrene in water is very low and was estimated to be 2 nmol/L, it increases rapidly to several tens of nanomol for slightly off‐resonance ensembles. Hence, the highest SERS activity was obtained with a nanoparticle ensemble exhibiting a plasmon resonance wavelength at 491 nm, which almost coincides with the excitation wavelengths. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
A novel durable substrate has been prepared for surface-enhanced Raman spectroscopy (SERS). The substrate is fabricated by reduction of silver nitrate using poly(vinyl pyrrolidone) (PVP) polymer as stabilizers. The SERS-active particles are based on poly(methylmethacrylate) (PMMA) materials, producing stable and optically translucent substrates. The stability of silver particles on the substrate was demonstrated by characterizing the localized surface plasmon resonance (LSPR) band of the elemental silver particles. The SERS activity was evaluated by detecting the signal from Raman probe molecules, Rhodamine 6G (R6G). This plastic substrate material is easy to prepare, inexpensive, and sturdy for SERS applications.  相似文献   

4.
Polythiophene derivative films have been synthesized on electrochemically roughened silver, gold, and copper electrodes by anodic oxidation of the corresponding monomers. Surface‐enhanced Raman scattering (SERS) analyses of these coatings led to high‐quality spectra with high signal‐to‐noise ratios. In contrast with platinum, the use of SERS‐active metals allowed the observation of important changes in the positions, widths, and relative intensities of the Raman bands during the polymer doping‐dedoping process. In situ SERS investigations revealed that the modifications in the spectral features, when the polymer oxidation degree is progressively increased, are due to a transition from the aromatic to the quinoid structure and to an increase of structural defects along the polymer chains. Moreover, in the case of soluble polyalkylthiophene films, SERS analyses were also carried out using colloidal silver solutions. Despite the very low polymer concentration and the mild experimental conditions used in these experiments, a large amplification of the Raman signal took place. Two other methods for obtaining polybithiophene–silver composite films are reported. In these cases, thanks to the silver particles, the polymer displays a SERS effect, which greatly improves the signal‐to‐noise ratio of the Raman spectra, thus allowing a much better vibrational analysis of both doped and undoped states.  相似文献   

5.
Xiao-Lei Zhang 《中国物理 B》2022,31(7):77401-077401
A two-dimensional (2D) surface-enhanced Raman scattering (SERS) substrate is fabricated by decorating carbon nanotube (CNT) films with Ag nanoparticles (AgNPs) in different sizes, via simple and low-cost chemical reduction method and self-assembling method. The change of Raman and SERS activity of carbon nanotubes/Ag nanoparticles (CNTs/AgNPs) composites with varying size of AgNPs are investigated by using rhodamine 6G (R6G) as a probe molecule. Meanwhile, the scattering cross section of AgNPs and the distribution of electric field of CNTs/AgNPs composite are simulated through finite difference time domain (FDTD) method. Surface plasmon resonance (SPR) wavelength is redshifted as the size of AgNPs increases, and the intensity of SERS and electric field increase with AgNPs size increasing. The experiment and simulation results show a Raman scattering enhancement factor (EF) of 108 for the hybrid substrate.  相似文献   

6.
Surface‐enhanced Raman spectroscopy (SERS) is rapidly growing as an analytical technique for the detection of extremely low concentrations of analytes. The analysis of natural resins from artworks is often restricted by sample size constraints in general, and Raman spectroscopy in particular is hampered by fluorescence when using visible irradiation wavelengths. This work demonstrates that SERS is able to overcome interference from fluorescence in such samples using the incident wavelength 514.5 nm, to allow collection of SERS spectra from extremely small samples. Characterisation of the natural resin surface coating from a painting by Tiepolo is discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
We present experimental results of the time‐dependent Raman signal response of fluoranthene adsorbed on a naturally grown Ag nanoparticle ensemble, which serves as surface enhanced Raman scattering (SERS) substrate. In addition, SERS characteristics such as the concentration‐dependent calibration curves and the limit of detection (LOD) for fluoranthene in distilled water will be shown. The SERS substrate was prepared by Volmer–Weber growth under ultrahigh vacuum condition and exhibits a plasmon resonance wavelength at 491 nm. For the measurement of SERS signal response and SERS/shifted excitation Raman difference spectroscopy spectra of fluoranthene in water, experimental Raman setup containing a microsystem light source with two emission wavelengths (487.61 nm and 487.91 nm) was used. We experimentally demonstrate that the maximum SERS intensity is achieved 9 min after changing the analyte concentration from 0 nmol/l to 600 nmol/l. This response time is explained by a time‐dependent adsorption of the probe molecules onto the nanoparticles. The LOD for fluoranthene in water was evaluated applying shifted excitation Raman difference spectroscopy (SERDS) at different molecule concentrations. For SERDS, two emission wavelengths of a prototype microsystem light source have been used for Raman excitation. The experimental results reveal that the LOD for the probe molecules is very low. Experimentally, we have detected a fluoranthene concentration of only 4 nmol/l, which is very close to our estimated LOD of 2 nmol/l. Thus, the presented Raman setup, with a SERS substrate, whose plasmon resonance coincides with the excitation wavelength for SERS measurements, is well suited for in‐situ trace detection of pollutant chemicals in water. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Dvoynenko MM  Wang JK 《Optics letters》2007,32(24):3552-3554
The authors report two methods to determine electromagnetic and chemical enhancement factors in surface-enhanced Raman scattering (SERS), which are based on saturation property and decay dynamics of photoluminescence and concurrent measurements of photoluminescence and resonance Raman scattering intensities. Considerations for experimental implementation are discussed. This study is expected to facilitate the understanding of SERS mechanisms and the advancement of the usage of SERS in chemical and biological sensor applications.  相似文献   

9.
This paper presents the application of Raman spectroscopy (RS) for the structural study of alizarin adsorbed on a metallic surface. As a biologically active molecule, alizarin has remarkable antigenotoxic activity like other anthraquinone dyes. Alizarin is highly fluorescent and that limits the application of RS as an investigation method; however, the Fourier transform‐RS (FTRS) can be applied since the near‐infrared excitation line lies far away from the absorption region of alizarin. The surface enhanced‐RS (SERS) technique also makes the fluorescence quenching possible. In this work, monolayers of alizarin were deposited on the surface of an electrode by the immersion of silver substrates in methanolic solution of the analyte. From such prepared samples, by using the excitation of 488, 514.5 and 647.1 nm the Raman spectra were registered. Depending on the excitation line, SERS or surface‐enhanced resonance Raman scattering (SERRS) spectra of alizarin were observed. The interpretation of experimental data was supported by theoretical calculations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
We demonstrate a highly sensitive surface-enhanced Raman scattering (SERS) substrate, which consists of Ag nanoparticles (NPs) assembled on the surface of a nanopatterned polymer film. The fabrication route of a polymer/Ag core–shell nanorod (PACSN) array employed a direct nanoimprint technique to create a high-resolution polymer nanorod array. The obtained nanopatterned polymer film was subjected to electroless deposition to form a sea-cucumber-like Ag shell over the surface of the polymer nanorod. The morphology and structures of PACSNs were analyzed by using scanning electron microscopy and X-ray diffraction. The as-synthesized PACSNs exhibited a remarkable SERS activity and Raman signal reproducibility to rhodamine 6G, and a concentration down to 10?12 M can be identified. The effect of electroless deposition time of Ag NPs onto the polymer nanorod surface was investigated. It was found that the electroless deposition time played an important role in SERS activity. Our results revealed that the combination of direct nanoimprint and electroless deposition provided a convenient and cost-effective way for large-scale fabrication of reliable SERS substrates without the requirement of expensive instruments.  相似文献   

11.
试提出一种高荧光及强背景噪声情况下表面增强拉曼散射光谱的提取方法。该方法从分析荧光谱及背景噪声信号的组成入手,构建相应模型对荧光谱及噪声信号进行估计,通过比较估计结果与实际数据的差别识别谱峰信号,并定位谱峰的基底位置。通过在若丹明6G、前列腺特异抗原测量及pH值传感实验中的实际应用检验可知,该方法可提高表面增强拉曼散射光谱信号的分辩率和测量准确度,在微量物质鉴别及物质含量定量测量方面有较好的应用前景。  相似文献   

12.
We report surface enhanced Raman spectroscopy (SERS) of Darling–Dennison resonance of thiourea on Ag electrode excited at 514.5 nm laser excitation. Darling–Dennison resonance indicates that two degenerate Raman modes interact with each other and their degenerate first‐order overtone modes obtain energy and appear in Raman spectra. Our study showed that the ratio of intensity of the Darling–Dennison resonance is up to 0.24 of its fundamental Raman intensity, when the applied electrode voltage is at –0.4 V versus the saturated calomel electrode. This phenomenon was also observed on the Ag island film surface at ambient condition. These observations demonstrated strong evidence for Darling–Dennison resonance band in SERS. The implications of these observations are also discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
表面增强拉曼散射(SERS)衬底的研究及应用   总被引:4,自引:0,他引:4  
表面增强拉曼散射(surface enhanced Raman scattering,SERS)是通过吸附在粗糙金属表面或金属纳米结构上的分子与金属表面发生的等离子共振(SPR)相互作用而引起的拉曼散射增强现象,是一种高灵敏的探测界面特性和分子间相互作用的光谱手段。文章归纳总结了近年来常用的SERS衬底的制备方法(溶液中的金属溶胶(MNPs in suspension)、 金属纳米粒子的自组装(self-assembly)、 模板法(Template method)和纳米光刻法(Nanolithographic)等;综述了这些衬底的表面增强拉曼特性;着重介绍了SERS增强在环境监测和生物医学应用上的最新国内外研究动态。目前已经能够实现增强因子高、 可靠性好、 重现性强的SERS衬底的可控制备,表明SERS可以作为一种高性能的分析探测工具,充分实现其潜在应用价值。  相似文献   

14.
The resonance and surface enhanced Raman scattering (SERS) spectra of chlorin e 6 trisodium salt in aqueous solutions, solid films, and adsorbed on the silver-coated surface of porous silicon are presented. Using the quantum-mechanical density functional method, the geometric structure and vibrational frequencies of the chlorin e 6 molecule are calculated and the Raman spectrum of this molecule is interpreted for the first time. The geometry of sorption of chlorin e 6 on the surface of a nanostructured silver film is considered based on a comparative analysis of the resonance Raman and SERS Raman spectra in the approximation of a short-range mechanism of Raman scattering enhancement.  相似文献   

15.
宿健  张谷令  彭洪尚 《发光学报》2018,39(9):1323-1329
提出一种新型的荧光及表面增强拉曼散射(SERS)双模式光学纳米探针。首先,通过再沉淀-包覆法合成二氧化硅包覆香豆素6的纳米颗粒,再在二氧化硅表面静电吸附多聚赖氨酸分子形成包覆层,随后通过原位还原的方法在多聚赖氨酸壳层复合银纳米颗粒,最后在银纳米颗粒表面吸附拉曼分子即形成双模式纳米探针。该探针通过二氧化硅包覆的荧光分子产生荧光信号,以多聚赖氨酸表面的银纳米颗粒作为SERS增强基底,利用拉曼分子获得SERS信号,实现了荧光及SERS双模式成像。荧光与表面增强拉曼散射相结合的双模式分析技术可同时发挥二者的优点,提高成像的分辨率和灵敏度,在生物医学领域具有重要的应用价值。  相似文献   

16.
表面增强拉曼散射是一种新型光学物质检测方法,与传统的气相色谱分析和质谱分析等方法相比,具有高灵敏度、高分辨率和可猝灭荧光等优点。而活性基底表面形态是SERS效应能否发生和SERS信号强弱的重要影响因素.本文分析介绍了5种表面增强拉曼散射活性基底的制备方法,对其实际应用效果做了简要分析。  相似文献   

17.
Silver fractal networks for surface-enhanced Raman scattering substrates   总被引:1,自引:0,他引:1  
Based on diffusion-limited aggregation process, a convenient nanotechnique is demonstrated to obtain large silver fractal networks for a surface-enhanced Raman scattering (SERS)-active substrate. The silver fractal networks are of high SERS enhancement factor, large dynamical range. The observed SERS efficiency can be explained in terms of strongly localized plasmon modes relative to the single particle plasmon resonance.  相似文献   

18.
颜承恩  周骏  李星  束磊  马亚楠 《发光学报》2013,34(3):382-387
采用柠檬酸三钠还原氯金酸和离子交换法制备金纳米粒子掺杂DNA-CTMA材料,利用钯催化反应合成9,9-二乙基-2,7-二-(4-吡啶)芴荧光染料(DPFP),将DPFP与DNA-CTMA混合后,旋凃制备金纳米粒子掺杂的DNA-CTMA-DPFP薄膜样品。通过吸收光谱、荧光光谱和拉曼光谱的测量,研究了薄膜样品的光学特性和表面增强拉曼散射(SERS)特性。实验结果表明,薄膜样品在300~360 nm的吸收主要来自DPFP,在500~700 nm的吸收来自样品中金纳米粒子的局域表面等离子共振;样品在370,386,408 nm处的荧光峰分别对应DPFP的S10-S00、S10-S01和S10-S02能级的电子振动跃迁;在785 nm激光激发下,薄膜样品的拉曼散射主要来自DPFP分子,随着金纳米粒子掺杂比的增大,DPFP分子的拉曼散射峰强度逐渐增强。因此,金纳米粒子掺杂DNA-CTMA薄膜适合作为多种染料分子的SERS基底。  相似文献   

19.
A surface-enhanced Raman scattering sensor is developed by etching polymer optical fiber and coating with gold nanorods. The SERS sensing experiments are demonstrated with the analyte molecules of rhodamine 6G (R6G) at 514.5 nm laser excitation. The results show that a strong fiber Raman background scattering overwhelm the R6G molecule Raman signal in common optrod configuration, but a distinct R6G SERS spectrum with 9 order magnitude enhancement can be observed while directly focusing light on the probe. Further modeling indicates the enhancement is attributed to both nanorods local field and their coupling.  相似文献   

20.
本实验利用实验室搭建的SPR-SERS显微拉曼光谱仪同时检测了吸附在40 nm银膜上的4-amin-othiophenol(4-ATP)自组装膜的表面等离子体共振(Surface Plasmon Resonance,简称SPR)消光谱及表面增强拉曼散射(Surface-Enhanced Raman Scattering,简称SERS)光谱,研究了两者之间的相关性。实验发现随着SPR吸收的增强,SERS强度也急剧增强,在SPR共振角附近SERS强度是远离共振角处的20多倍。因此在共振角附近能够极大的提高SERS的检测灵敏度并扩展SERS的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号