首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
We report magnetic field spectroscopy measurements in carbon nanotube quantum dots exhibiting fourfold shell structure in the energy level spectrum. The magnetic field induces a large splitting between the two orbital states of each shell, demonstrating their opposite magnetic moment and determining transitions in the spin and orbital configuration of the quantum dot ground state. We use inelastic cotunneling spectroscopy to accurately resolve the spin and orbital contributions to the magnetic moment. A small coupling is found between orbitals with opposite magnetic moment leading to anticrossing behavior at zero field.  相似文献   

2.
Experiments on semiconductor quantum dot systems have demonstrated the coupling between electron spins in quantum dots and spins localized in the neighboring area of the dots. Here we show that in a magnetic field the electrical current flowing through a single quantum dot tunnel-coupled to a spin displays a dip at the singlet–triplet anticrossing point which appears due to the spin–orbit interaction. We specify the requirements for which the current dip is formed and examine the properties of the dip for various system parameters, such as energy detuning, spin–orbit interaction strength, and coupling to leads. We suggest a parameter range in which the dip could be probed.  相似文献   

3.
We report a photoluminescence detected anticrossing of the energy levels in an undoped asymmetric coupled-double-quantum-well buried in a p-i-n structure. Due to the built-in electric field, the quantum wells are tilted in such a way that the symmetric energy level is higher than that of the antisymmetric one in the conduction band. Keeping the laser excitation energy below the barrier, with increasing laser power, the level anticrossing and the quantum confined Stark effect were observed due to decreasing built-in electric field by the photogenerated electron and hole pairs.  相似文献   

4.
A diluted magnetic semiconductor (DMS) quantum well (QW) microcavity operating in the limit of the strong coupling regime is studied by magnetoptical experiments. The interest of DMS QW relies on the possibility to vary the excitonic resonance over a wide range of energies by applying an external magnetic field, typically about 30 meV for 5 T in our sample. In particular, the anticrossing between the QW exciton and the cavity mode can be tuned by the external field. We observe the anticrossing and formation of exciton polaritons in magneto-reflectivity experiments. In contrast, magneto-luminescence exhibits purely excitonic character. Under resonant excitation conditions an additional emission line is observed at the energy of the dark exciton. The creation of dark excitons is made possible due to heavy hole–light hole mixing in the QW. The emission at this energy could be due to a combined spin flip of an electron and a bright exciton recombination.  相似文献   

5.
A model is presented for the magnetic excitations and magnon-phonon coupling in a localised moment ferromagnet in which spins can reorientate by application of a magnetic field. The model is suitable for those materials which possess a spin wave gap at zero wave vector and therefore the magnon and acoustic phonon branches can intersect. A magnon-phonon coupling linear in both spin and phonon operators is employed which has proved successful for the ferrous salts. The main effect of the applied field is to modify the spin wave gap, and to introduce a critical value for the coupling constant which enables the system to remain stable as the gap goes to zero. Furthermore the wave vector of the anticrossing point decreases as the spin wave gap increases and therefore the value of the sound velocity determined by high resolution inelastic neutron experiments is dependent on the gap.  相似文献   

6.
The simultaneous effects of intense terahertz (THz) laser, a homogeneous magnetic fields, and the modification of the structural parameters on the electronic states, and the intraband optical absorption spectrum in a two-dimensional double quantum dot molecule are theoretically investigated. The crossing and anticrossing are observed in the energy dependence on the magnetic field induction between the third and the fourth energy levels. Additionally, it is shown that an intense THz laser field always shifts the energy spectrum to higher values. The variation of the structural parameters leads to the change of the positions of the energy levels and the anticrossing point. Finally, we have found that the intraband optical absorption spectrum, particularly the absorption intensity and the peak position, can be effectively regulated by an intense THz laser and a magnetic fields, as well as by the variation of the structural parameters of the double quantum dot molecule.  相似文献   

7.
We polarize nuclear spins in a GaAs double quantum dot by controlling two-electron spin states near the anticrossing of the singlet (S) and m(S)= +1 triplet (T+) using pulsed gates. An initialized S state is cyclically brought into resonance with the T+ state, where hyperfine fields drive rapid rotations between S and T+, "flipping" an electron spin and "flopping" a nuclear spin. The resulting Overhauser field approaches 80 mT, in agreement with a simple rate-equation model. A self-limiting pulse sequence is developed that allows the steady-state nuclear polarization to be set using a gate voltage.  相似文献   

8.
The dipole modes of non-parabolic quantum dots are studied by means of their current and density patterns as well as with their local absorption distribution. The anticrossing of the so-called Bernstein modes originates from the coupling with electron-hole excitations of the two Landau bands which are occupied at the corresponding magnetic fields. Non-quadratic terms in the potential cause an energy separation between bulk and edge current modes in the anticrossing region. On a local scale the fragmented peaks absorb energy in complementary spatial regions which evolve with the magnetic field. Received 3 December 2001 / Received in final form 5 April 2002 Published online 9 July 2002  相似文献   

9.
用碱金属原子的模型势结合B-样条函数展开方法研究了静电场中铷原子里德堡态的能级结构特点,计算了铷原子主量子数n由16到25之间的(n 3)s和(n,k)态间的Stark能级反交叉位置和宽度,得到了与实验相一致的结果,并给出了计算铷原子在静电场中高里德堡态能级反交叉位置的经验公式.  相似文献   

10.
We employ a new laterally coupled, vertical double dot with a tunable tunnel-coupling gate in a parallel configuration to study the electron spin and orbital dependence of quantum mechanical tunnel coupling on the size of the honeycomb vertices in the small electron numbers regime. We find a transition from the weak coupling regime, where fluctuations in tunnel coupling due to varying electron configuration dominate the anticrossings, to a regime where the two dots coalesce. We apply a magnetic field to ascertain the orbital angular momenta of the Fermi surface eigenstates, which correlate with anticrossing size, and we identify spin pairs with congruent behavior.  相似文献   

11.
We report the direct observation of quantum coupling in individual quantum dot molecules and its manipulation using static electric fields. A pronounced anticrossing of different excitonic transitions is observed as the electric field is tuned. A comparison of our experimental results with theory shows that the observed anticrossing occurs between excitons with predominant spatially direct and indirect character and reveals a field driven transition of the nature of the molecular ground state exciton wave function. Finally, the interdot quantum coupling strength is deduced optically and its dependence on the interdot separation is calculated.  相似文献   

12.
A general expression for the cross section of inelastic magnetic scattering of cold polarized neutrons by superconducting rings has been derived. In this scattering process, the metastable superconducting current changes via quantum jumps corresponding to a decrease in the number of fluxoids in the superconducting ring by one or several units and the change in the energy of the ring is transferred to the kinetic energy of the scattered neutron. For rings from type-II superconductors with a thickness smaller than the field penetration depth but larger than the electron mean free path, the cross sections of inelastic scattering with neutron spin flip have been obtained for the first time. The possibility of increasing the cross section of neutron scattering by a system of rings has been discussed.  相似文献   

13.
The Bloch spinors, energy spectrum, and spin density in energy bands are studied for a two-dimensional electron gas (2DEG) with Rashba spin-orbit (SO) interaction subject to the one-dimensional (1D) periodic electrostatic potential of a lateral superlattice. The space symmetry of the Bloch spinors with spin parity is studied. It is shown that the Bloch spinors at fixed quasi-momentum describe the standing spin waves with the wavelength equal to the superlattice period. The spin projections in these states have components both parallel and transverse to the 2DEG plane. The anticrossing of the energy dispersion curves due to the interplay between the SO and periodic terms is observed, thus, leading to the spin flip. The relation between the spin parity and the interband optical selection rules is discussed, and the effect of magnetization of the SO superlattice in the presence of an external electric field is predicted. The text was submitted by the authors in English.  相似文献   

14.
The effects of interdiffusion and electrons' Coulomb interaction on the energy spectrum in Gaussian-shaped single and double quantum rings in the presence of magnetic field has been considered in the framework of exact diagonalization method. The one-electron energies as functions of magnetic field for different values of diffusion parameter have been obtained. The two-electron energies and electron probability density distributions are obtained as well. It is shown that the energy oscillations which are more pronounced for a single quantum ring, smooth out due to the interdiffusion. The Coulomb interaction transforms the crossings of the two-electron levels to anticrossings and can lead to the appearance of an additional level between the anticrossing levels.  相似文献   

15.
The unusual magnetic properties of a novel low-dimensional quantum ferrimagnet Cu2Fe2Ge4O13 are studied using bulk methods, neutron diffraction, and inelastic neutron scattering. It is shown that this material can be described in terms of two low-dimensional quantum spin subsystems, one gapped and the other gapless, characterized by two distinct energy scales. Long-range magnetic ordering observed at low temperatures is a cooperative phenomenon caused by weak coupling of these two spin networks.  相似文献   

16.
We report a new type of coupling between quantum dot excitons mediated by the strong single-photon field in a high-finesse micropillar cavity. Coherent exciton coupling is observed for two dots with energy differences of the order of the exciton-photon coupling. The coherent coupling mode is characterized by an anticrossing with a particularly large line splitting of 250 microeV. Because of the different dispersion relations with temperature, the simultaneous photonic coupling of quantum dot excitons can be easily distinguished from cases of sequential strong coupling of two quantum dots.  相似文献   

17.
We report inelastic light scattering measurements of spin excitations on coupled electron bilayers with relatively large tunneling gaps at total filling factor νT=1. We show that the pseudospin polarization order parameter, where the pseudospin labels the occupation of symmetric and antisymmetric levels, can be determined from the energy of long wavelength spin excitations. Our experiments indicate that the order parameter in the quantum Hall ground state collapses at the incompressible–compressible phase transition. The latter is driven by decreasing the tunneling gap through the application of an in-plane magnetic field.  相似文献   

18.
We study the influence of electric field on the electronic energy band structure, zero-temperature ballistic conductivity and optical properties of double quantum wire. System described by double-well anharmonic confinement potential is exposed to a perpendicular magnetic field and Rashba and Dresselhaus spin-orbit interactions. Numerical results show up that the combined effects of internal and external agents cause the formation of crossing, anticrossing, camel-back/anomaly structures and the lateral, downward/upward shifts in the energy dispersion. The anomalies in the energy subbands give rise to the oscillation patterns in the ballistic conductance, and the energy shifts bring about the shift in the peak positions of optical absorption coefficients and refractive index changes.  相似文献   

19.
肖贤波  李小毛  周光辉 《物理学报》2007,56(3):1649-1654
理论上研究Rashba自旋-轨道相互作(SOI)量子线在外电磁波辐照下的电子自旋极化输运性质.在自由电子模型下利用散射矩阵方法,发现当Rashba SOI较弱时,自旋极化率与外电磁场频率和电子入射能量无关,而当Rashba SOI较强时,自旋极化率则强烈依赖于外场频率和电子入射能量,其物理根源是Rashba SOI使子带混合引起的.此外,当电子的入射能量增加到打开另一通道阈值时,电子的透射率出现一个反常的台阶结构,这来源于电子与光子的非弹性散射而使电子在子带间的跃迁. 关键词: 量子线 电磁波 自旋极化输运 散射矩阵  相似文献   

20.
We have investigated the energy spectrum of a superlattice with wide quantum wells under the bias of an electric field perpendicular to the superlattice layers. By using photocurrent spectroscopy, transitions of Wannier–Stark levels for the various electron and hole states are observed, and at low fields, further structures corresponding to miniband edge transitions are found. Various anticrossings could be observed at higher and lower electric fields. The anticrossings at high electric fields are due to energy alignment of different electronic sublevels in adjacent wells. The anticrossing structures at low fields could be interpreted as resonances between intrawell and interwell excitonic Wannier–Stark states with equal sublevel states, where the anticrossing is caused by differences in exciton binding energy. Fitting of transitions and anticrossings was done by using a semi-empirical model and we have extracted relevant fitting parameters like the quantum-confined Stark coefficient, binding energies for the excitonic Wannier–Stark levels and the resonant coupling strength for states involved in the various anticrossing transitions. Finally, insight into the excitonic influences on the coupling of the WS states could be obtained by comparing the fitted parameters for the various transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号