首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The azimuthal anchoring energy of the nematic liquid crystal 4-pentyl-4'-cyanobiphenil (5CB) on a poly(tetrafluoroethylene) (teflon, PTFE) film is measured for the first time. The PTFE film is deposed using the Wittmann and Smith technique which consists on rubbing a bar of this polymer against a glass substrate at a controlled temperature and pressure. Measurements of the azimuthal anchoring energy are made with a reflectometric technique which provides high accuracy and sensitivity. The dependence of the azimuthal anchoring energy on temperature and on the rubbing pressure is investigated. The extrapolation length remains virtually constant in the whole temperature range of the nematic phase except for an increase of 25% close to the clearing temperature. The azimuthal anchoring energy is somewhat strong and increases with increasing the deposition pressure of PTFE. The observation of a relevant pre-transitional anisotropy of the reflection coefficients in the isotropic phase proves that the surface interactions favor an excess of orientational order. Ageing of the anchoring energy and gliding of the easy axis are experimentally observed. Both these phenomena suggest the presence of an anisotropic adsorbed layer of nematic molecules on the PTFE film.  相似文献   

2.
A macroscopic helical twist is imposed on an achiral nematic liquid crystal by controlling the azimuthal alignment directions at the two substrates. On application of an electric field the director rotates in the substrate plane. This electroclinic effect, which requires the presence of chirality, is strongest at the two substrates and increases with increasing imposed twist distortion. We present a simple model involving a trade-off among bulk elastic energy, surface anchoring energy, and deracemization entropy that suggests the large equilibrium director rotation induces a deracemization of chiral conformations in the molecules-effectively "top-down" chiral induction-quantitatively consistent with experiment.  相似文献   

3.
Summary A new reflectometric method to measure the azimuthal anchoring energy at the interface between a nematic liquid crystal and an isotropic method is proposed. The spurious contribution to the reflectivity coefficients due to the presence of a director-field distortion near the interface is calculated by using the numerical Berreman algorithm and is shown to be negligible for magnetic fields small enough (H<10 kG). Preliminary measurements of the azimuthal anchoring energy at the interface between the NLC 5CB and a rubbed glass plate are given. Research supported in part by MPI and in part by CNR.  相似文献   

4.
We have measured the angular dependence of the surface torque associated with a relatively weak anchoring of a nematic liquid crystal, for large deviations θ (near π/2) from the orientation of minimum energy. Analysing the torque in a Fourier series, we find that in addition to the usual first term, viz. sin 2θ, an important contribution from a sin 6θ term is needed to adequately represent the experimental variation.  相似文献   

5.
孙睿鹏  黄锡珉  邵喜斌  马凯  荆海 《物理学报》1996,45(12):2035-2040
通过测量扭曲液晶盒中的液晶分子的实际扭曲角及摩擦方向与液晶分子的界面指向矢之间的方位偏角,用自行建立的液晶方位表面锚定能的测量方法,测定了5CB液晶与摩擦的聚酰亚胺界面的锚定能及其温度依赖性,并用热力学理论进行了分析.实验结果表明,随着温度的增加液晶的表面锚定能E是减小的,从25.5℃时的5.0×10-5J/m2减小到35℃时的5.0×10-6J/m2;同时,外推长度de关键词:  相似文献   

6.
In the mean field approximation, we evaluate the temperature dependence of the anchoring energy strength of a nematic liquid crystal in contact with a solid substrate due to thermal fluctuations. Our study is limited to the weak anchoring case, where the microscopic surface energy is small with respect to the mean field energy due to the nematic phase. We assume furthermore that the physical properties of the substrate can be considered temperature independent in the range of the nematic phase. According to the thermodynamical perturbative approach, the macroscopic surface energy is deduced by averaging the microscopic one, with a density matrix containing only the nematic mean field. We show that the thermal renormalization of the anchoring energy coefficients is proportional to the generalized nematic order parameters. Our analysis shows also that the thermal renormalization of the anchoring energy coefficients predicted by means of Landau-like theories is a first and rather rough approximation in the whole nematic temperature range.  相似文献   

7.
郑桂丽  张辉  叶文江  张志东  宋宏伟  宣丽 《中国物理 B》2016,25(3):36101-036101
Based on the experimental phenomena of flexoelectric response at defect sites in nematic inversion walls conducted by Kumar et al., we gave the theoretical analysis using the Frank elastic theory. When a direct-current electric field normal to the plane of the substrate is applied to the parallel aligned nematic liquid crystal cell with weak anchoring, the rotation of ± 1 defects in the narrow inversion walls can be exhibited. The free energy of liquid crystal molecules around the +1 and-1 defect sites in the nematic inversion walls under the electric field was formulated and the electric-field-driven structural changes at the defect site characterized by polar and azimuthal angles of the local director were simulated. The results reveal that the deviation of azimuthal angle induced by flexoelectric effect are consistent with the switching of extinction brushes at the +1 and-1 defects obtained in the experiment conducted by Kumar et al.  相似文献   

8.
The dependence of the threshold parameters and the period of the electric-field-induced spatially periodic reorientation of the director in a flexoelectric nematic liquid crystal (NLC) on the anchoring conditions at the surface of a planar NLC cell has been studied. The threshold electric field and the corresponding wave-number of the periodic structure of the director field have been numerically calculated for arbitrary values of the anchoring energy. In the case of strong anchoring, the corresponding analytical expressions are obtained in a single-constant approximation. A decrease in the azimuthal anchoring energy leads to an increase in the intervals of possible values of the flexoelectric parameter ν and the ratio K2/K1 of the Frank elastic constants. A decrease in the polar anchoring energy leads to narrowing of these intervals as compared to the case of infinitely strong anchoring at the NLC cell surface.  相似文献   

9.
The anchoring property of the substrate surface of liquid crystal cells plays an important role in display and nondisplay fields. This property directly affects the deformation of liquid crystal molecules to change the phase difference through liquid crystal cells. In this paper, a test method based on the alternating-current bridge is proposed to determine the capacitance of liquid crystal cells and thus measure the anchoring energy of the substrate surface. The anchoring energy can be obtained by comparing the capacitance–voltage curves of twisted nematic liquid crystal cells with different anchoring properties in experimental and theoretical results simulated on the basis of Frank elastic theory. Compared with the other methods to determine the anchoring energy, our proposed method requires a simple treatment of liquid crystal cells and allows easy and high-accuracy measurements, thereby expanding the test ideas on the performance parameters of liquid crystal devices.  相似文献   

10.
A nematic liquid crystal slab composed of N molecular layers is investigated using a simple cubic lattice model, based upon the molecular pair potential which is spatially anisotropic and dependent on elastic constants of liquid crystals. A perfect nematic order is assumed in the theoretical treatment, which means the orientation of the molecular long axis coincides with the director of liquid crystal and the total free energy equals to the total interaction energy. We present a modified Gruhn-Hess model, which is relative to the splay-bend elastic constant K13. Furthermore, we have studied the free nematic interfacial behavior (intrinsic anchoring) by this model in the assumption of the perfect nematic order. We find that the preferred orientation at the free interface and the intrinsic anchoring strength change with the value of modification, and that the director profile can be determined by the competition of the intrinsic anchoring with external forces present in the system. Also we simulate the intrinsic anchoring at different temperatures using Monte Carlo method and the simulation results show that the intrinsic anchoring favors planar alignment and the free interface is more disordered than the bulk.  相似文献   

11.
We present an electro-optic method for measuring the zenithal anchoring strength of nematic liquid crystals, based on the determination of the distortion produced by a small electric field. This method yields the zenithal anchoring strength at small applied torques, and remarkably, only needs local measurements (optical path difference versus applied voltage, sample thickness), in contrast to the classical methods that use measurements integrated over the entire sample. We determine the zenithal anchoring strength for two nematic liquid crystals (5 CB and 5 OCB) with positive dielectric anisotropy, onto poly(tetrafluoroethylene) (PTFE) treated surfaces, that yield planar liquid crystal cells. We find that the anchoring at the PTFE-5 CB interface is strong, with an extrapolation length approximately 30 nm, and independent of temperature far enough from the isotropic transition. We observe a pretransitional weakening of the anchoring strength near the nematic-isotropic transition, due to the reduction of the orientational order parameter at the interface. With 5 OCB, we measure a stronger anchoring, with an extrapolation length approximately 15 nm. This result may be explained by the increase of the van der Waals interactions between the liquid crystal molecules and the surface, due to the presence of the oxygen atom.  相似文献   

12.
The relationship between bistable surface anchoring and the pitch jump process is examined for a planar cholesteric liquid crystal. Introducing a high-order, azimuthal surface anchoring potential into a simple model to describe a cholesteric, we derive an expression for the director twist as the natural pitch of the liquid crystal is allowed to vary. Writing the energy in terms of the surface twist, we are able to determine the twists which minimize the total energy of the system. We demonstrate how a pitch jump is related to an energy exchange from one branch of metastable states to another. We then discuss how the co-existence of energy minima and their associated solution branches may help explain the thermal hysteresis observed experimentally in cholesterics in the neighbourhood of a pitch jump. The presence of a higher-order surface energy term can expand the range of anchoring strengths in which pitch jumps are possible. We also investigate the influence of bidirectional surface anchoring on the behaviour of the total energy. Intermediate quarter-turn pitch jumps can occur, depending on the relative strength of the high-order anchoring term, and these can have a significant effect on the system hysteresis.  相似文献   

13.
孙睿鹏  郭建新  王宗凯  马凯  黄锡珉 《物理学报》1996,45(12):2041-2046
通过测试光延迟研究了聚酰亚胺LB膜的光学各向异性,分析了在LB膜成膜过程中成膜分子的流动取向特性,并研究了液晶的表面锚定能,分析了LB膜上液晶的取向机制.聚酰亚胺LB膜的链段的取向程度较强摩擦情形的聚酰亚胺表面的链段取向要差.强摩擦的聚酰亚胺会比聚酰亚胺LB膜具有更好的排列液晶分子的能力.LB膜的流动取向模式使得聚酰亚胺成膜分子沿拉伸方向形成一定的有序排列,并诱导液晶分子定向排列,液晶和聚合物分子相互作用是液晶表面排列的主要动力 关键词:  相似文献   

14.
Anchoring properties of substrate with a grating surface   总被引:2,自引:0,他引:2       下载免费PDF全文
The anchoring properties of substrate with a grating surface are investigated analytically. The alignment of nematic liquid crystal (NLC) in a grating surface originates from two mechanisms, thus the anchoring energy consists of two parts. One originates from the interaction potential between NLC molecules and the molecules on the substrate surface, and the other stems from the increased elastic strain energy. Based on the two mechanisms, the expression of anchoring energy per unit area of a projected plane of this grating surface is deduced and called the equivalent anchoring energy formula. Both the strength and the easy direction of equivalent anchoring energy are a function of the geometrical parameters (amplitude and pitch) of a grating surface. By using this formula, the grating surface can be replaced by its projected plane and its anchoring properties can be described by the equivalent anchoring energy formula.  相似文献   

15.
Based on the fact that rubbed groove patterns also affect the anchoring of liquid crystals at substrates,a quartic coupling is included in constructing the surface energy for a liquid crystal cell.The phase diagram and the wetting behaviors of the liquid crystal cell,bounded by surfactant-laden interfaces in a magnetic field perpendicular to the substrate are discussed by taking the quartic coupling into account.The nematic order increases at the surface while it decreases in the bulk as a result of the introduction of quartic substrate-liquid crystal coupling,indicating that the groove anchoring makes the liquid crystal molecules align more orderly near the substrate than away from it.This causes a different wetting behavior:complete wetting.  相似文献   

16.
周璇  张志东 《计算物理》2010,27(4):598-602
使用修正的Gruhn-Hess空间各向异性两体势模型研究弯曲形变向列相液晶盒.为了易与弹性理论的结果进行比较,做单一弹性常数近似.在理想有序条件下,对模型进行连续化处理,截断到形变的二阶项,给出的自由能密度公式与含k13项的弹性理论公式一致.使用模型直接研究强锚泊弯曲形变向列相盒,没有出现弹性理论给出的边界处不连续.通过Monte Carlo模拟研究发现,两体势中的k13项将加剧弯曲盒中间层的涨落.  相似文献   

17.
《Physics letters. A》1997,235(6):621-628
A sandwich cell made of two flat glass substrates covered with obliquely evaporated SiOx and filled with a common thermotropic nematic liquid crystal is considered. The two glasses are assembled with their evaporation directions antiparallel to each other in order to provide a uniformly pretilted nematic layer, without any local distortion. By means of a Landau-de Gennes approach, based on the general symmetry properties of the flat glass surface, including the anisotropy induced by the SiOx, and of the nematic tensor order parameter, a temperature variation of the director azimuthal and tilt angle in the nematic phase is predicted. Observations via polarizing microscopy were performed and the fits, made according to the proposed model, compare well with the experimental data presented here.  相似文献   

18.
We studied the collective elastic interaction in a system of many macroparticles embedded in a nematic liquid crystal. A theoretical approach to the interaction of macroparticles via deformation of the director field [1] is developed. It is found that the director field distortion induced by many particles leads to the screening of the elastic pair interaction potential. This screening strongly depends on the shape of the embedded particles: it exists for anisotropic particles and is absent for spherical ones. Our results are valid for the homeotropic and the planar anchoring on the particle surface and for different Frank constants. We apply our results to cylindrical particles in a nematic liquid crystal. In a system of magnetic cylindrical grains suspended in a nematic liquid crystal, the external magnetic field perpendicular to the grain orientation results in inclining the grains to the director and induces an elastic Yukawa-law attraction between the grains. The appearance of this elastic attraction can explain the cellular texture in magnetically doped liquid crystals in the presence of the magnetic field [2].  相似文献   

19.
In this paper we report an experimental investigation on the dynamics of the azimuthal director reorientation at a nematic-solid interface. Three qualitatively different kinds of substrates have been investigated: I) intrinsically anisotropic SiO-substrates (-evaporation), II) isotropic SiO-substrates (-evaporation) and III) rubbed PVA-substrates. In the case II), an in-plane anisotropy was induced cooling slowly the thermotropic nematic liquid crystal (NLC) from the isotropic phase in the presence of a 0.75 T magnetic field. The reorientation dynamic of the surface azimuthal director angle at the switching-on and off of a magnetic (or electric) field has been investigated. All the substrates show comparable azimuthal anchoring energies and two dynamic regimes: a fast dynamic response, driven by the bulk director reorientation and an extremely slow reorientation. The slow dynamics is explained in terms of anisotropic adsorption of NLC molecules on the solid substrate and is well represented by a stretched exponential. Received 7 December 1998  相似文献   

20.
A simple, compact electro-optic polarizer based on an ion-exchanged glass channel waveguide covered with a nematic liquid crystal (LC) is proposed. A full-vectorial beam propagation method is employed to simulate this device for the first time. For the cases of zero and strong LC surface anchoring, the performance of the proposed polarizer under different applied voltages is analyzed numerically. Analysis indicates that surface anchoring of the liquid crystal is a key issue influencing the performance for the proposed optical polarizer device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号