首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Cyclotron resonance of single-valley two-dimensional Dirac fermions in HgTe-based quantum wells has been experimentally investigated. The thickness of the wells is close to the critical value corresponding to the transition from the direct energy spectrum to the inverted spectrum. Under terahertz laser irradiation, transitions between the ground and first Landau levels, as well as between the first and second Landau levels, have been observed. Low magnetic fields corresponding to the cyclotron resonance, as well as the strong dependence of the position of the resonance on the electron density, indicate the Dirac character of the spectrum in these quantum wells. It has been shown that disorder plays an important role in the formation of the spectrum of two-dimensional Dirac fermions.  相似文献   

2.
Weyl semimetals are a new class of Dirac material that possesses bulk energy nodes in three dimensions, in contrast to two dimensional graphene. In this paper, we study a Weyl semimetal subject to an applied magnetic field. We find distinct behavior that can be used to identify materials containing three dimensional Dirac fermions. We derive expressions for the density of states, electronic specific heat, and the magnetization. We focus our attention on the quantum oscillations in the magnetization. We find phase shifts in the quantum oscillations that distinguish the Weyl semimetal from conventional three dimensional Schrödinger fermions, as well as from two dimensional Dirac fermions. The density of states as a function of energy displays a sawtooth pattern which has its origin in the dispersion of the three dimensional Landau levels. At the same time, the spacing in energy of the sawtooth spike goes like the square root of the applied magnetic field which reflects the Dirac nature of the fermions. These features are reflected in the specific heat and magnetization. Finally, we apply a simple model for disorder and show that this tends to damp out the magnetic oscillations in the magnetization at small fields.  相似文献   

3.
We show that new massless Dirac fermions are generated when a slowly varying periodic potential is applied to graphene. These quasiparticles, generated near the supercell Brillouin zone boundaries with anisotropic group velocity, are different from the original massless Dirac fermions. The quasiparticle wave vector (measured from the new Dirac point), the generalized pseudospin vector, and the group velocity are not collinear. We further show that with an appropriate periodic potential of triangular symmetry, there exists an energy window over which the only available states are these quasiparticles, thus providing a good system to probe experimentally the new massless Dirac fermions. The required parameters of external potentials are within the realm of laboratory conditions.  相似文献   

4.
5.
《Physics letters. [Part B]》1987,195(2):155-159
We show that the zero energy limit of the Ramond superstring naturally describes Dirac fermions with an OSP(D + 1,1¦2) or Parisi-Sourlas supersymmetry, and establish an equivalence between ordinary Dirac fermions and a massive (0 + 1)-dimensional supergravity theory.  相似文献   

6.
We have studied the tunneling of Dirac fermions through magnetic barriers in graphene. Magnetic barriers are produced via delta function-like inhomogeneous magnetic fields in which Dirac fermions in graphene experience the tunneling barrier in the real sense in contrast to Klein paradox caused by electrostatic barriers. The transmission through the magnetic barriers as functions of incident energy and angle of incoming fermions shows characteristic oscillations associated with tunneling resonances. We have also found the confined states in the magnetic barrier region which turn out to correspond to the total internal reflection in the usual optics.  相似文献   

7.
We propose a simple but feasible experimental scheme to simulate and detect Dirac fermions with cold atoms trapped in one-dimensional optical lattice. In our scheme, through tuning the laser intensity, the one-dimensional optical lattice can have two sites in each unit cell and the atoms around the low energy behave as massive Dirac fermions. Furthermore, we show that these relativistic quasiparticles can be detected experimentally by using atomic density profile measurements and Bragg scattering.  相似文献   

8.
We study the electronic band structures of massless Dirac fermions in symmetrical graphene superlattice with cells of three regions. opening gaps and additional Dirac points. Finally, we inspect the potential effect on minibands, the anisotropy of group velocity and the energy bands contours near Dirac points. We also discuss the evolution of gap edges and cutoff region near the vertical Dirac points.  相似文献   

9.
We show that multiple layered Dirac cones can emerge in the band structure of properly addressed multicomponent cold fermionic gases in optical lattices. The layered Dirac cones contain multiple copies of massless spin-1/2 Dirac fermions at the same location in momentum space, whose different Fermi velocity can be tuned at will. On-site microwave Raman transitions can further be used to mix the different Dirac species, resulting in either splitting of or preserving the Dirac point (depending on the symmetry of the on-site term). The tunability of the multiple layered Dirac cones allows us to simulate a number of fundamental phenomena in modern physics, such as neutrino oscillations and exotic particle dispersions with E~p(N) for arbitrary integer N.  相似文献   

10.
In this paper we study the relativistic quantum dynamics of a massless fermion confined in a quantum ring. We use a model of confining potential and introduce the interaction via Dirac oscillator coupling, which provides ring confinement for massless Dirac fermions. The energy levels and corresponding eigenfunctions for this model in graphene layer in the presence of Aharonov–Bohm flux in the centre of the ring and the expression for persistent current in this model are derived. We also investigate the model for quantum ring in graphene layer in the presence of a disclination and a magnetic flux. The energy spectrum and wave function are obtained exactly for this case. We see that the persistent current depends on parameters characterizing the topological defect.  相似文献   

11.
We demonstrate that Dirac fermions self-interacting or coupled to dynamic scalar fields can emerge in the low energy sector of designed bosonic and fermionic cold atom systems. We illustrate this with two examples defined in two spacetime dimensions. The first one is the self-interacting Thirring model. The second one is a model of Dirac fermions coupled to a dynamic scalar field that gives rise to the Gross-Neveu model. The proposed cold atom experiments can be used to probe spectral or correlation properties of interacting quantum field theories thereby presenting an alternative to lattice gauge theory simulations.  相似文献   

12.
冯东海  贾天卿  徐至展 《中国物理》2003,12(9):1016-1020
The energy levels of zinc-blende GaN quantum dots (QDs) are studied within the framework of the effective-mass envelope-function approximation. The dependence of the energy of electron and hole states on the quantum dot (QD) size is presented. The selection rules for optical transitions are given and the oscillator strengths of the dipole-allowed transitions for various QD radii are calculated with the wavefunctions of quantized energy levels. The theoretical absorption spectrum of GaN QDs is in good agreement with the existing experimental result.  相似文献   

13.
We calculate the mode-dependent transmission probability of massless Dirac fermions through an ideal strip of graphene (length L, width W, no impurities or defects) to obtain the conductance and shot noise as a function of Fermi energy. We find that the minimum conductivity of order e2/h at the Dirac point (when the electron and hole excitations are degenerate) is associated with a maximum of the Fano factor (the ratio of noise power and mean current). For short and wide graphene strips the Fano factor at the Dirac point equals 1/3, 3 times smaller than for a Poisson process. This is the same value as for a disordered metal, which is remarkable since the classical dynamics of the Dirac fermions is ballistic.  相似文献   

14.
The consequences of CP and CPT invariance for production and subsequent decay of Dirac and Majorana fermions in polarized fermion-antifermion annihilation are analytically studied. We derive general symmetry relations for the production spin density matrix and for the three-particle decay matrices and obtain constraints for the polarization and the spin-spin correlations of Dirac and Majorana fermions. We prove that only for Majorana fermions the energy and opening angle distribution factorizes exactly into contributions from production and decay if CP is conserved. Received: 6 November 2001 / Revised version: 23 April 2002 / Published online: 12 July 2002  相似文献   

15.
In the variational framework, we study the electronic energy spectrum of massless Dirac fermions of graphene subjected to one-dimensional oscillating magnetic and electrostatic fields centered around a constant uniform static magnetic field. We analyze the influence of the lateral periodic modulations in one direction, created by these oscillating electric and magnetic fields, on Dirac like Landau levels depending on amplitudes and periods of the field modulations. We compare our theoretical results with those found within the framework of non-degenerate perturbation theory. We found that the technique presented here yields energies lower than that obtained by the perturbation calculation, and thus gives more stable solutions for the electronic spectrum of massless Dirac fermion subjected to a magnetic field perpendicular to graphene layer under the influence of additional periodic potentials.  相似文献   

16.
We propose an experimental scheme to simulate and observe relativistic Dirac fermions with cold atoms in a hexagonal optical lattice. By controlling the lattice anisotropy, one can realize both massive and massless Dirac fermions and observe the phase transition between them. Through explicit calculations, we show that both the Bragg spectroscopy and the atomic density profile in a trap can be used to demonstrate the Dirac fermions and the associated phase transition.  相似文献   

17.
We report the first measurements of phonon dispersion curves on the (001) surface of the strong three-dimensional topological insulator Bi2Se3. The surface phonon measurements were carried out with the aid of coherent helium beam surface scattering techniques. The results reveal a prominent signature of the exotic metallic Dirac fermion quasiparticles, including a strong Kohn anomaly. The signature is manifest in a low energy isotropic convex dispersive surface phonon branch with a frequency maximum of 1.8 THz and having a V-shaped minimum at approximately 2kF that defines the Kohn anomaly. Theoretical analysis attributes this dispersive profile to the renormalization of the surface phonon excitations by the surface Dirac fermions. The contribution of the Dirac fermions to this renormalization is derived in terms of a Coulomb-type perturbation model.  相似文献   

18.
We propose a lattice model for Dirac fermions which allows us to break the degeneracy of the node structure. In the presence of a random gap we analyze the scaling behavior of the localization length as a function of the system width within a numerical transfer-matrix approach. Depending on the strength of the randomness, there are different scaling regimes for weak, intermediate and strong disorder. These regimes are separated by transitions that are characterized by one-parameter scaling.  相似文献   

19.
We report high magnetic field scanning tunneling microscopy and Landau level spectroscopy of twisted graphene layers grown by chemical vapor deposition. For twist angles exceeding ~3° the low energy carriers exhibit Landau level spectra characteristic of massless Dirac fermions. Above 20° the layers effectively decouple and the electronic properties are indistinguishable from those in single-layer graphene, while for smaller angles we observe a slowdown of the carrier velocity which is strongly angle dependent. At the smallest angles the spectra are dominated by twist-induced van Hove singularities and the Dirac fermions eventually become localized. An unexpected electron-hole asymmetry is observed which is substantially larger than the asymmetry in either single or untwisted bilayer graphene.  相似文献   

20.
Landau level spectroscopy of ultrathin graphite layers   总被引:1,自引:0,他引:1  
Far infrared transmission experiments are performed on ultrathin epitaxial graphite samples in a magnetic field. The observed cyclotron resonance-like and electron-positron-like transitions are in excellent agreement with the expectations of a single-particle model of Dirac fermions in graphene, with an effective velocity of c=1.03 x 10(6) m/s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号