首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
By means of composite quantum collision models, we study the entanglement dynamics of a bipartite system, i.e.,two qubits S1 and S2 interacting directly with an intermediate auxiliary qubit SA, while SAis in turn coupled to a thermal reservoir. We are concerned with how the intracollisions of the reservoir qubits influence the entanglement dynamics. We show that even if the system is initially in the separated state, their entanglement can be generated due to the interaction between the qubits. In the long-time limit, the steady-state entanglement can be generated depending on the initial state of S1 and S2 and the environment temperature. We also study the dynamics of tripartite entanglement of the three qubits S1,S2, and SAwhen they are initially prepared in the GHZ state and separated state, respectively. For the GHZ initial state,the tripartite entanglement can be maintained for a long time when the collision strength between the environment qubits is sufficiently large.  相似文献   

2.
We investigate the dynamics of two qubits coupled with a quantum oscillator by using the adiabatic approximation method. We take account of the interaction between the qubits and show how the entanglement is affected by the interaction parameter. The most interesting result is that we can prolong the entanglement time or improve the entanglement degree by using an appropriate interaction parameter. As the generation and preservation of entanglement of qubits are crucial for quantum information processing, our research will be useful.  相似文献   

3.
刘贵艳  毛竹  周斌 《物理学报》2018,67(2):20301-020301
研究具有次近邻相互作用五量子比特XXZ海森伯自旋链在磁场作用下的热纠缠性质,利用数值计算求出最近邻两量子比特和次近邻两量子比特的共生纠缠度(concurrence),分别记为C_(12)和C_(13).研究结果表明,阻挫参数对配对热纠缠具有重要影响,而且阻挫参数的变化对C_(12)和C_(13)的影响也各不相同;温度、磁场、Dzyaloshinkii-Moriya相互作用以及各向异性参数对配对热纠缠有着不同程度的影响;通过选择适当的模型参数,可以有效地调节和提高五量子比特XXZ海森伯自旋链的配对热纠缠.  相似文献   

4.
We study the interaction between a single-mode quantized field and a quantum system composed of two qubits. We suppose that two qubits initially be prepared in the mixed and separable state, and study how entanglement between two qubits arises in the course of evolution according to the Jaynes-Cummings type interaction with nonclassical radiation field. We also investigate the relation between entanglement and purity of qubit subsystem. We show that different photon statistics have different effects on the dynamical behavior of the qubit subsystem. When the qubits are initially prepared in the maximally mixed and separable state, for coherent state field we cannot find entanglement between two qubits; for squeezed state field entanglement between two qubits exists in several short period of time; for even and odd coherent state fields of large photon number, the dynamical behavior of the entanglement between two qubits shows collapse and revival phenomenon. For odd coherent state field of small photon number, the entanglement with both qubits initially prepared in maximally mixed state can be stronger than that with both qubits initially prepared in pure states. For fields of small photon number, the entanglement strongly depends on the states they are initially prepared in. For coherent state field, and odd and even coherent state fields of large photon number, the entanglement only depends on the purity of the initial state of qubit subsystem. We also show that during the evolution the unentangled state may be purer than the entangled state, and the maximum degree of entanglement may not occur at the time when the qubit subsystem is in the purist state.  相似文献   

5.
We study the interaction between a single-mode quantized field and a quantum system composed of two qubits. We suppose that two qubits initially be prepared in the mixed and separable state, and study how entanglement between two qubits arises in the course of evolution according to the Jaynes-Cummings type interaction with nonclassical radiation field. We also investigate the relation between entanglement and purity of qubit subsystem. We show that different photon statistics have different effects on the dynamical behavior of the qubit subsystem. When the qubits are initially prepared in the maximally mixed and separable state, for coherent state field we cannot find entanglement between two qubits; for squeezed state field entanglement between two qubits exists in several short period of time; for even and odd coherent state fields of large photon number, the dynamical behavior of the entanglement between two qubits shows collapse and revival phenomenon. For odd coherent state field of small photon number, the entanglement with both qubits initially prepared in maximally mixed state can be stronger than that with both qubits initially prepared in pure states. For fields of small photon number, the entanglement strongly depends on the states they are initially prepared in. For coherent state field, and odd and even coherent state fields of large photon number, the entanglement only depends on the purity of the initial state of qubit subsystem. We also show that during the evolution the unentangled state may be purer than the entangled state, and the maximum degree of entanglement may not occur at the time when the qubit subsystem is in the purist state.  相似文献   

6.
We propose to implement a quantum switch scheme for coupling highly detuned superconducting qubits connected by a gap-tunable bridge qubit. By modulating the frequency of the bridge qubit, it can be used as a coupler to switch on/off and adjust the coupling strength between the initially non-interaction qubits. It is shown that the proposals of quantum information transfer and quantum entangled gate between two highly detuned qubits can be implemented with high fidelity. Moreover, we extend the case of coupling the switch to multiple qubits for the generation of W states. The advantages of our scheme are that it eliminates the need for tuning the gaps of the qubits and the cross-talk interaction is greatly suppressed. The influence of decoherence and parameter variation is also investigated by numerical simulation, which suggests that the present scheme is feasible in current experiment.  相似文献   

7.
We have performed spectroscopy measurements on two coupled flux qubits. The qubits are coupled inductively, which results in a sigma(z)(1)sigma(z)(2) interaction. By applying microwave radiation, we observe resonances due to transitions from the ground state to the first two excited states. From the position of these resonances as a function of the applied magnetic field, we observe the coupling of the qubits. The coupling strength agrees with calculations of the mutual inductance.  相似文献   

8.

Considering the generalized double Jaynes-Cummings model, we examine the entanglement between two non-identical dipole-dipole coupled qubits interacting with two independent detuned vacuum cavity modes. We calculate the negativity as a measure of qubits entanglement. We find that entanglement parameter evolve periodically with time and the period are affected by the model parameters and initial states of qubits. For unentangled initial states the detuning and dipole-dipole interaction affect only the period of entanglement oscillations, not the maximum value of entanglement. For entangled states the detuning stabilizes the entanglement parameter oscillations. According to choice of initial entangled state the dipole-dipole strength is greatly enhances or weakens the oscillations of the entanglement parameter.

  相似文献   

9.
A system of two interacting qubits off-resonantly coupled to a common non-Markovian reservoir at zero temperature is analyzed. Comparing with the results in Markovian case, we find that much higher values of entanglement can be obtained for an initially factorized state of the two-qubit system. The maximal value of the entanglement increases as the strength of dipole-dipole interaction and detuning grow. Moreover, the entanglement induced by non-Markovian reservoir is more robust against the asymmetrical couplings between the two qubits and the reservoir.  相似文献   

10.
The exact entanglement dynamics of two spin qubits in two independent spin star baths via a Heisenberg XY interaction in the thermodynamic limit has been investigated by using an operator technique. After the Holstein-Primakoff transformation, the transformed Hamiltonian is effectively equivalent to the Hamiltonian of a Jaynes-Cummings model. The results show that the dynamics of the entanglement exhibits strong non-Markovian behavior and depends on the environmental temperature, the coupling strength between the center spin and the bath, the detuning controlled by a locally applied external magnetic field, as well as the initial state of the two qubits.  相似文献   

11.
我们考虑初始无关联并且与由一个谐振子构成的环境之间互相耦合的三量子比特系统。通过研究量子比特-环境的耦合强度以及量子比特初始态对量子关联的影响,我们发现环境可以诱导量子关联,提出并证明了四个命题阐述谐振子如何调控三个量子比特中量子关联的分布。给出了产生量子关联的条件。特别地,对于弱耦合,我们不但能够获得很多的量子关联,而且还使量子比特系统和环境始终处于分离态。一般地,量子关联动力学是很复杂 的,这是由于环境起着两个互相竞争的作用:一方面诱导出各个比特之间的量子关联;另一方面又使它们发生消相干,从而破坏量子关联。  相似文献   

12.
我们考虑初始无关联并且与由一个谐振子构成的环境之间互相耦合的三量子比特系统。通过研究量子比特-环境的耦合强度以及量子比特初始态对量子关联的影响,我们发现环境可以诱导量子关联,提出并证明了四个命题阐述谐振子如何调控三个量子比特中量子关联的分布。给出了产生量子关联的条件。特别地,对于弱耦合,我们不但能够获得很多的量子关联,而且还使量子比特系统和环境始终处于分离态。一般地,量子关联动力学是很复杂 的,这是由于环境起着两个互相竞争的作用:一方面诱导出各个比特之间的量子关联;另一方面又使它们发生消相干,从而破坏量子关联。  相似文献   

13.
The realization of controllable couplings between any two qubits and among any multiple qubits is the critical problem in building a programmable quantum processor(PQP). We present a design to implement these types of couplings in a double-dot molecule system, where all the qubits are connected directly with capacitors and the couplings between them are controlled via the voltage on the double-dot molecules. A general interaction Hamiltonian of n qubits is presented, from which we can derive the Hamiltonians for performing operations needed in building a PQP, such as gate operations between arbitrary two qubits and parallel coupling operations for multigroup qubits. The scheme is realizable with current technology.  相似文献   

14.
The Kraus form of the completely positive dynamical maps is appealing from the mathematical and the point of the diverse applications of the open quantum systems theory. Unfortunately, the Kraus operators are poorly known for the two-qubit processes. In this paper, we derive the Kraus operators for a pair of interacting qubits, while the strength of the interaction is arbitrary. One of the qubits is subjected to the x-projection spin measurement. The obtained results are applied to calculate the dynamics of the entanglement in the qubits system. We obtain the loss of the correlations in the finite time interval; the stronger the inter-qubit interaction, the longer lasting entanglement in the system.  相似文献   

15.
Most quantum computer realizations require the ability to apply local fields and tune the couplings between qubits, in order to realize single bit and two bit gates which are necessary for universal quantum computation. We present a scheme to remove the necessity of switching the couplings between qubits for two bit gates, which are more costly in many cases. Our strategy is to compute with encoded qubits in and out of carefully designed interaction free subspaces analogous to decoherence free subspaces. We give two examples to show how universal quantum computation is realized in our scheme with local manipulations to physical qubits only, for both diagonal and off diagonal interactions.  相似文献   

16.
《Physics letters. A》2020,384(26):126673
We study one-dimensional quantum walk with four internal degrees of freedom resulted from two entangled qubits. We will demonstrate that the entanglement between the qubits and its corresponding coin operator enable one to steer the walker's state from a classical to standard quantum-walk behavior, and a novel one. Additionally, we report on self-trapped behavior and perfect transfer with highest velocity for the walker. We also show that symmetry of probability density distribution, the most probable place to find the walker and evolution of the entropy are subject to initial entanglement between the qubits. In fact, we confirm that if the two qubits are separable (zero entanglement), entropy becomes minimum whereas its maximization happens if the two qubits are initially maximally entangled. We will make contrast between cases where the entangled qubits are affected by coin operator identically or else, and show considerably different deviation in walker's behavior and its properties.  相似文献   

17.
We construct an entangled quantum heat engine (EQHE) based on two two-spin systems with Dzyaloshinski-Moriya (DM) anisotropic antisymmetric interaction. By applying the explanations of heat transferred and work performed at the quantum level in Kieu’s work [Phys. Rev. Lett. 93, 140403 (2004)], the basic thermodynamic quantities, i.e., heat transferred, net work done in a cycle and efficiency of EQHE are investigated in terms of DM interaction and concurrence. The validity of the second law of thermodynamics is confirmed in the entangled system. It is found that there is a same efficiency for both antiferromagnetic and ferromagnetic cases, and the efficiency can be controlled in two manners: (1) only by spin-spin interaction J and DM interaction D; (2) only by the temperature T and concurrence C. In order to obtain a positive net work, we need not entangle all qubits in two two-spin systems and we only require the entanglement between qubits in a two-spin system not be zero. As the ratio of entanglement between qubits in two two-spin systems increases, the efficiency will approach infinitely the classical Carnot one. An interesting phenomenon is an abrupt transition of the efficiency when the entanglements between qubits in two two-spin systems are equal.  相似文献   

18.
In quantum computing the geometric phase is a valuable tool to achieve fault tolerant. And quantum dot system is a candidate for constructing quantum processor. In this paper we investigate the geometric phase of a double qubits system interaction with a quantum point contact device. The qubits were constructed by two coupled double quantum dots systems. The coulomb interaction between the two subsystem have been considered. By using the definition which introduced by Tong, we calculate the geometric phases of each double quantum dots subsystem.  相似文献   

19.
We prove that translationally invariant Hamiltonians of a chain of n qubits with nearest-neighbour interactions have two seemingly contradictory features. Firstly in the limit \({n \rightarrow \infty}\) we show that any translationally invariant Hamiltonian of a chain of n qubits has an eigenbasis such that almost all eigenstates have maximal entanglement between fixed-size sub-blocks of qubits and the rest of the system; in this sense these eigenstates are like those of completely general Hamiltonians (i.e., Hamiltonians with interactions of all orders between arbitrary groups of qubits). Secondly, in the limit \({n \rightarrow \infty}\) we show that any nearest-neighbour Hamiltonian of a chain of n qubits has a Gaussian density of states; thus as far as the eigenvalues are concerned the system is like a non-interacting one. The comparison applies to chains of qubits with translationally invariant nearest-neighbour interactions, but we show that it is extendible to much more general systems (both in terms of the local dimension and the geometry of interaction). Numerical evidence is also presented that suggests that the translational invariance condition may be dropped in the case of nearest-neighbour chains.  相似文献   

20.
We propose a scheme for generating Bell states involving two SQUID-based charge qubits by coupling them to a nanomechanical resonator. We also show that it is possible to implement a two-qubit logic gate between the two charge qubits by choosing carefully the interaction time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号