首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As exemplified by power grids and large-scale brain networks, some functions of networks consisting of phase oscillators rely on not only frequency synchronization, but also phase synchronization among the oscillators. Nevertheless, even after the oscillators reach frequency-synchronized status, the phase synchronization is not always accomplished because the phase difference among the oscillators is often trapped at non-zero constant values. Such phase difference potentially results in inefficient transfer of power or information among the oscillators, and avoids proper and efficient functioning of the networks. In the present study, we newly define synchronization cost by using the phase difference among the frequency-synchronized oscillators, and investigate the optimal network structure with the minimum synchronization cost through rewiring-based optimization. By using the Kuramoto model, we demonstrate that the cost is minimized in a network with a rich-club topology, which comprises the densely-connected center nodes and low-degree peripheral nodes connecting with the center module. We also show that the network topology is characterized by its bimodal degree distribution, which is quantified by Wolfson’s polarization index.  相似文献   

2.
The effect of noise on phase synchronization in small sets and larger populations of weakly coupled chaotic oscillators is explored. Both independent and correlated noise are found to enhance phase synchronization of two coupled chaotic oscillators below the synchronization threshold; this is in contrast to the behavior of two coupled periodic oscillators. This constructive effect of noise results from the interplay between noise and the locking features of unstable periodic orbits. We show that in a population of nonidentical chaotic oscillators, correlated noise enhances synchronization in the weak coupling region. The interplay between noise and weak coupling induces a collective motion in which the coherence is maximal at an optimal noise intensity. Both the noise-enhanced phase synchronization and the coherence resonance numerically observed in coupled chaotic R?ssler oscillators are verified experimentally with an array of chaotic electrochemical oscillators.  相似文献   

3.
We compare two methods for detecting phase synchronization in coupled non-phase-coherent oscillators. One method is based on the locking of self-sustained oscillators with an irregular signal. The other uses trajectory recurrences in phase space. We identify the pros and cons of both methods and propose guidelines to detect phase synchronization in data series.  相似文献   

4.
We study the emergence of collective synchronization in large directed networks of heterogeneous oscillators by generalizing the classical Kuramoto model of globally coupled phase oscillators to more realistic networks. We extend recent theoretical approximations describing the transition to synchronization in large undirected networks of coupled phase oscillators to the case of directed networks. We also consider the case of networks with mixed positive-negative coupling strengths. We compare our theory with numerical simulations and find good agreement.  相似文献   

5.
We investigate the synchronous dynamics of Kuramoto oscillators and van der Pol oscillators on Watts-Strogatz type small-world networks. The order parameters to characterize macroscopic synchronization are calculated by numerical integration. We focus on the difference between frequency synchronization and phase synchronization. In both oscillator systems, the critical coupling strength of the phase order is larger than that of the frequency order for the small-world networks. The critical coupling strength for the phase and frequency synchronization diverges as the network structure approaches the regular one. For the Kuramoto oscillators, the behavior can be described by a power-law function and the exponents are obtained for the two synchronizations. The separation of the critical point between the phase and frequency synchronizations is found only for small-world networks in the theoretical models studied.  相似文献   

6.
We study the effects of mutual and external chaotic phase synchronization in ensembles of bursting oscillators. These oscillators (used for modeling neuronal dynamics) are essentially multiple time scale systems. We show that a transition to mutual phase synchronization takes place on the bursting time scale of globally coupled oscillators, while on the spiking time scale, they behave asynchronously. We also demonstrate the effect of the onset of external chaotic phase synchronization of the bursting behavior in the studied ensemble by a periodic driving applied to one arbitrarily taken neuron. We also propose an explanation of the mechanism behind this effect. We infer that the demonstrated phenomenon can be used efficiently for controlling bursting activity in neural ensembles.  相似文献   

7.
Two types of phase synchronization (accordingly, two scenarios of breaking phase synchronization) between coupled stochastic oscillators are shown to exist depending on the discrepancy between the control parameters of interacting oscillators, as in the case of classical synchronization of periodic oscillators. If interacting stochastic oscillators are weakly detuned, the phase coherency of the attractors persists when phase synchronization breaks. Conversely, if the control parameters differ considerably, the chaotic attractor becomes phase-incoherent under the conditions of phase synchronization break.  相似文献   

8.
Anomalous phase synchronization in nonidentical interacting oscillators is manifest as the increase of frequency disorder prior to synchronization. We show that this effect can be enhanced when a time-delay is included in the coupling. In systems of limit-cycle and chaotic oscillators we find that the regions of phase disorder and phase synchronization can be interwoven in the parameter space such that as a function of coupling or time-delay the system shows transitions from phase ordering to disorder and back.  相似文献   

9.
We describe the relation between the complete, phase and generalized synchronization of the mechanical oscillators (response system) driven by the chaotic signal generated by the driven system. We identified the close dependence between the changes in the spectrum of Lyapunov exponents and a transition to different types of synchronization. The strict connection between the complete synchronization (imperfect complete synchronization) of response oscillators and their phase or generalized synchronization with the driving system (the (1:1) mode locking) is shown. We argue that the observed phenomena are generic in the parameter space and preserved in the presence of a small parameter mismatch.  相似文献   

10.
We consider chaotic oscillator synchronization and propose a new approach for detecting the synchronized behavior of chaotic oscillators. This approach is based on analysis of different time scales in the time series generated by coupled chaotic oscillators. We show that complete synchronization, phase synchronization, lag synchronization, and generalized synchronization are particular cases of the synchronized behavior called time-scale synchronization. A quantitative measure of chaotic oscillator synchronous behavior is proposed. This approach is applied to coupled Rössler systems.  相似文献   

11.
We study the clusterization of phase oscillators coupled with delay in complex networks. For the case of diffusive oscillators, we formulate the equations relating the topology of the network and the phases and frequencies of the oscillators (functional response). We solve them exactly in directed networks for the case of perfect synchronization. We also compare the reliability of the solution of the linear system for non-linear couplings. Taking advantage of the form of the solution, we propose a frequency adaptation rule to achieve perfect synchronization. We also propose a mean-field theory for uncorrelated random networks that proves to be pretty accurate to predict phase synchronization in real topologies, as for example, the Caenorhabditis elegans or the autonomous systems connectivity.  相似文献   

12.
We study phase synchronization in oscillator networks through phase reduced method. The dynamics of networks is reduced to phase equations by this method. Analysing the phase equations through the master stability function method, one obtains that the oscillators with identical frequency can be in-phase synchronized by weak balanced coupling. Similarly, the problem of frequency synchronization of oscillators with different frequencies is transformed to the existence of a locally asymptotically stable equilibrium of the phase error system.  相似文献   

13.
We generalize the n:m phase synchronization between two chaotic oscillators by mutual coupling phase signals. To characterize this phenomenon, we use two coupled oscillators to demonstrate their phase synchronization with amplitudes practically noncorrelated. We take the 1:1 phase synchronization as an example to show the properties of mean frequencies, mean phase difference, and Lyapunov exponents at various values of coupling strength. The phase difference increases with 2pi phase slips below the transition. The scaling rules of the slip near and away from the transition are studied. Furthermore, we demonstrate the transition to a variety of n:m phase synchronizations and analyze the corresponding coupling dynamics. (c) 2002 American Institute of Physics.  相似文献   

14.
We theoretically investigate the collective phase synchronization between interacting groups of globally coupled noisy identical phase oscillators exhibiting macroscopic rhythms. Using the phase reduction method, we derive coupled collective phase equations describing the macroscopic rhythms of the groups from microscopic Langevin phase equations of the individual oscillators via nonlinear Fokker-Planck equations. For sinusoidal microscopic coupling, we determine the type of the collective phase coupling function, i.e., whether the groups exhibit in-phase or antiphase synchronization. We show that the macroscopic rhythms can exhibit effective antiphase synchronization even if the microscopic phase coupling between the groups is in-phase, and vice versa. Moreover, near the onset of collective oscillations, we analytically obtain the collective phase coupling function using center-manifold and phase reductions of the nonlinear Fokker-Planck equations.  相似文献   

15.
We analyze the interplay of synchronization and structure evolution in an evolving network of phase oscillators. An initially random network is adaptively rewired according to the dynamical coherence of the oscillators, in order to enhance their mutual synchronization. We show that the evolving network reaches a small-world structure. Its clustering coefficient attains a maximum for an intermediate intensity of the coupling between oscillators, where a rich diversity of synchronized oscillator groups is observed. In the stationary state, these synchronized groups are directly associated with network clusters.  相似文献   

16.
We study the dynamics of nonlinear oscillators indirectly coupled through a dynamical environment or a common medium. We observed that this form of indirect coupling leads to synchronization and phase-flip transition in periodic as well as chaotic regime of oscillators. The phase-flip transition from in- to anti-phase synchronization or vise-versa is analyzed in the parameter plane with examples of Landau-Stuart and Ro?ssler oscillators. The dynamical transitions are characterized using various indices such as average phase difference, frequency, and Lyapunov exponents. Experimental evidence of the phase-flip transition is shown using an electronic version of the van der Pol oscillators.  相似文献   

17.
We investigate the chaotic phase synchronization in a system of coupled bursting neurons in small-world networks. A transition to mutual phase synchronization takes place on the bursting time scale of coupled oscillators, while on the spiking time scale, they behave asynchronously. It is shown that phase synchronization is largely facilitated by a large fraction of shortcuts, but saturates when it exceeds a critical value. We also study the external chaotic phase synchronization of bursting oscillators in the small-world network by a periodic driving signal applied to a single neuron. It is demonstrated that there exists an optimal small-world topology, resulting in the largest peak value of frequency locking interval in the parameter plane, where bursting synchronization is maintained, even with the external driving. The width of this interval increases with the driving amplitude, but decrease rapidly with the network size. We infer that the externally applied driving parameters outside the frequency locking region can effectively suppress pathologically synchronized rhythms of bursting neurons in the brain.  相似文献   

18.
Ping Li  Zhang Yi 《Physica A》2008,387(7):1669-1674
We study the synchronization of coupled phase oscillators in random complex networks. The topology of the networks is assumed to be vary over time. Here we mainly study the onset of global phase synchronization when the topology switches rapidly over time. We find that the results are, to some extent, different from those in deterministic situations. In particular, the synchronizability of coupled oscillators can be enhanced in ER networks and scale-free networks under fast switching, while in stochastic small-world networks such enhancement is not significant.  相似文献   

19.
We demonstrate the existence of phase synchronization of two chaotic rotators. Contrary to phase synchronization of chaotic oscillators, here the Lyapunov exponents corresponding to both phases remain positive even in the synchronous regime. Such frequency locked dynamics with different ratios of frequencies are studied for driven continuous-time rotators and for discrete circle maps. We show that this transition to phase synchronization occurs via a crisis transition to a band-structured attractor.  相似文献   

20.
In this work, we study the collective dynamics of phase oscillators in a mobile ad hoc network whose topology changes dynamically. As the network size or the communication radius of individual oscillators increases, the topology of the ad hoc network first undergoes percolation, forming a giant cluster, and then gradually achieves global connectivity. It is shown that oscillator mobility generally enhances the coherence in such networks. Interestingly, we find a new type of phase synchronization/clustering, in which the phases of the oscillators are distributed in a certain narrow range, while the instantaneous frequencies change signs frequently, leading to shuttle-run-like motion of the oscillators in phase space. We conduct a theoretical analysis to explain the mechanism of this synchronization and obtain the critical transition point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号