首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graphene has attracted enormous attention over the past years in condensed matter physics. The most interesting feature of graphene is that its low-energy excitations are relativistic Dirac fermions. Such feature is the origin of many topological properties in graphene-like physics. On the other hand, ultracold quantum gas trapped in an optical lattice has become a unique setting for quantum simulation of condensed matter physics. Here, we mainly review our recent work on quantum simulation of graphene-like physics with ultracold atoms trapped in a honeycomb or square optical lattice, including the simulation of Dirac fermions and quantum Hall effect with and without Landau levels. We also present the related experimental advances.  相似文献   

2.
A mixture of ultracold bosons and fermions placed in an optical lattice constitutes a novel kind of quantum gas, and leads to phenomena, which so far has been discussed neither in atomic physics, nor in condensed matter physics. We discuss the phase diagram at low temperatures, and in the limit of strong atom-atom interactions, and predict the existence of quantum phases that involve pairing of fermions with one or more bosons, or, respectively, bosonic holes. The resulting composite fermions may form, depending on the system parameters, a normal Fermi liquid, a density wave, a superfluid liquid, or an insulator with fermionic domains. We discuss the feasibility for observing such phases in current experiments.  相似文献   

3.
《Nuclear Physics B》1988,305(3):339-366
We construct the multi-instanton solutions for the graded nonlinear σ model with symmetry U(1,1/2)/U(1/1) ⊗ U(1/1), and we calculate the quantum fluctuations around these solutions. The determinant of the fluctuation operator for a fixed multi-instanton solution turns out to be UV finite. However, the integration over instanton parameters contains an integral, ∫d|a| |a|−3, over the size, |a|, of each instanton, which is quadratically singular at |a|=0. It is shown that these quadratic divergences cancel exactly in the calculation of all Green functions. The applicability of the present results to the integer quantum Hall effect is discussed.  相似文献   

4.
The model of fermions in a magnetic field interacting via a purely three-body repulsive interaction has attracted interest because it produces, in the limit of short range interaction, the Pfaffian state with non-Abelian excitations. We show that this is part of a rich phase diagram containing a host of fractional quantum Hall states, a composite fermion Fermi sea, and a pairing transition. This is entirely unexpected, because the appearance of composite fermions and fractional quantum Hall effect is ordinarily thought to be a result of strong two-body repulsion. Recent breakthroughs in ultracold atoms have facilitated the realization of such a system, where this physics can be tested.  相似文献   

5.
We use the bosonization approach to investigate quantum phases of boson-fermion mixtures (BFM) of atoms confined to one dimension by an anisotropic optical lattice. For a BFM with a single species of fermions we find a charge-density wave phase, a fermion pairing phase, and a phase separation regime. We also obtain the rich phase diagram of a BFM with two species of fermions. We demonstrate that these phase diagrams can be understood in terms of polarons, i.e., atoms "dressed" by screening clouds of the other atom species. Techniques to detect the resulting quantum phases are discussed.  相似文献   

6.
詹明生 《物理》2022,(2):92-99
用光镊形成光阱囚禁单个原子、用激光将单个原子冷却到基态形成超冷原子、将超冷原子相干合成单个超冷分子、将单原子分子重排串成丰富多样的超冷单原子分子阵列,这就构成了精密相干可控的多粒子量子系统,为多种前沿科学研究与技术发展提供难得的量子平台.文章介绍近年来在单原子量子态高保真操控、异核原子量子纠缠、原子一分子耦合态相干控制...  相似文献   

7.
颜波 《物理》2021,(1):31-36
文章从超冷原子研究的视角出发,回顾了用"从下到上"的方案来开展量子模拟研究的历史。超冷原子作为宏观量子态,各个自由度精确可控,是量子模拟的绝佳平台。光晶格将冷原子物理和凝聚态物理融合起来,是其中最重要的技术之一,为超冷原子量子模拟提供了一个扎实的落脚点。近年来,关于拓扑量子模拟的研究日益兴起,成为超冷原子量子模拟新的重要方向。文章介绍这方面近期的一些工作进展。最后分享作者对超冷原子量子模拟的一些思考。  相似文献   

8.
秦猛  李延标  白忠 《物理学报》2015,64(3):30301-030301
通过负值度和测量诱导的扰动, 研究了非均匀磁场和杂质磁场对自旋为1的Heisenberg系统量子关联的影响. 研究发现非均匀磁场的增加会降低纠缠, 但也可用来产生纠缠, 并且会提高临界非线性作用Kc的值, 测量诱导的扰动的临界磁场要高于负值度的临界磁场, 而且测量诱导的扰动不会随着非线性作用|K| 的减小而消失, 它能全面反映量子关联的存在. 研究还发现, 不同杂质磁场对测量诱导的扰动的影响彼此间无交叉. 杂质磁场下, 相互作用|J| 必须小于非线性作用|K| 才会有纠缠存在, 但是测量诱导的扰动却可以在相互作用|J| 大于非线性作用|K| 时依然存在, |J| 与|K| 相同时只是测量诱导的扰动的最小取值点. 此外, 系统粒子数目对量子关联也具有重要影响.  相似文献   

9.
10.
Strongly interacting theories of fermions are of great interest both experimentally and theoretically. While heavy-ion collision experiments provide us with information on hot and dense QCD, experiments with ultracold trapped atoms provide an accessible and controllable system where quantum many-body phenomena can be studied experimentally in great detail. Our theoretical understanding of these theories has improved in recent years. However, finite-size effects in these systems are not yet fully understood. We review some aspects related to finite-size effects and the role that these effects are playing in strongly-interacting fermionic theories.  相似文献   

11.
Using a functional renormalization group approach we study the zero temperature phase diagram of two-dimensional Bose-Fermi mixtures of ultracold atoms in optical lattices, in the limit when the velocity of bosonic condensate fluctuations is much larger than the Fermi velocity. For spin-1/2 fermions we obtain a phase diagram, which shows a competition of pairing phases of various orbital symmetry (s, p, and d) and antiferromagnetic order. We determine the value of the gaps of various phases close to half filling, and identify subdominant orders as well as short-range fluctuations from the renormalization group flow. For spinless fermions we find that p-wave pairing dominates the phase diagram.  相似文献   

12.
Nontrivial symmetry of order parameters is crucial in some of the most interesting quantum many-body states of ultracold atoms as well as condensed matter systems. Examples in cold atoms include p-wave Feshbach molecules and d-wave paired states of fermions that could be realized in optical lattices in the Hubbard regime. Identifying these states in experiments requires measurements of the relative phase of different components of the entangled pair wave function. We propose and discuss two schemes for such phase-sensitive measurements, based on two-particle interference revealed in atom-atom or atomic density correlations. Our schemes can also be used for relative phase measurements for nontrivial particle-hole order parameters, such as d-density wave order.  相似文献   

13.
The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold antihydrogen above a material surface and measuring a gravitational interaction of antihydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eötvös-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology.  相似文献   

14.
We develop a quantum Monte Carlo method for many fermions using random walks in the space of Slater determinants. An approximate approach is formulated with a trial wave function |Psi(T)> to control the phase problem. Using a plane-wave basis and nonlocal pseudopotentials, we apply the method to Be, Si, and P atoms and dimers, and to bulk Si supercells. Single-determinant wave functions from density functional theory calculations were used as |Psi(T)> with no additional optimization. The calculated binding energies of dimers and cohesive energy of bulk Si are in excellent agreement with experiments and are comparable to the best existing theoretical results.  相似文献   

15.
Quantum dynamics in strongly correlated systems are of high current interest in many fields including dense plasmas, nuclear matter and condensed matter and ultracold atoms. An important model case are fermions in lattice systems that is well suited to analyze, in detail, a variety of electronic and magnetic properties of strongly correlated solids. Such systems have recently been reproduced with fermionic atoms in optical lattices which allow for a very accurate experimental analysis of the dynamics and of transport processes such as diffusion. The theoretical analysis of such systems far from equilibrium is very challenging since quantum and spin effects as well as correlations have to be treated non‐perturbatively. The only accurate method that has been successful so far are density matrix renormalization group (DMRG) simulations. However, these simulations are presently limited to one‐dimensional (1D) systems and short times. Extension of quantum dynamics simulations to two and three dimensions is commonly viewed as one of the major challenges in this field. Recently we have reported a breakthrough in this area [N. Schlünzen et al., Phys. Rev. B (2016)] where we were able to simulate the expansion dynamics of strongly correlated fermions in a Hubbard lattice following a quench of the confinement potential in 1D, 2D and 3D. The results not only exhibited excellent agreement with the experimental data but, in addition, revealed new features of the short‐time dynamics where correlations and entanglement are being build up. The method used in this work are nonequilibrium Green functions (NEGF) which are found to be very powerful in the treatment of fermionic lattice systems filling the gap presently left open by DMRG in 2D and 3D. In this paper we present a detailed introduction in the NEGF approach and its application to inhomogeneous Hubbard clusters. In detail we discuss the proper strong coupling approximation which is given by T ‐matrix selfenergies that sum up two‐particle scattering processes to infinite order. The efficient numerical implemen‐tation of the method is discussed in detail as it has allowed us to achieve dramatic performance gains. This has been the basis for the treatment of more than 100 particles over large time intervals. The numerical results presented in this paper concentrate on the diffusion in 1D to 3D lattices. We find that the expansion dynamics consist of three different phases that are linked with the build‐up of correlations. In the long time limit, a universal scaling with the particle number is revealed. By extrapolating the expansion velocities to the macroscopic limit, the obtained results show excellent agreement with recent experiments on ultracold fermions in optical lattices. Moreover we present results for the site‐resolved behavior of correlations and entanglement that can be directly compared with experiments using the recently developed atomic microscope technique. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
This is an introductory review of the physics of topological quantum matter with cold atoms. Topological quantum phases, originally discovered and investigated in condensed matter physics, have recently been explored in a range of different systems, which produced both fascinating physics findings and exciting opportunities for applications. Among the physical systems that have been considered to realize and probe these intriguing phases, ultracold atoms become promising platforms due to their high flexibility and controllability. Quantum simulation of topological phases with cold atomic gases is a rapidly evolving field, and recent theoretical and experimental developments reveal that some toy models originally proposed in condensed matter physics have been realized with this artificial quantum system. The purpose of this article is to introduce these developments. The article begins with a tutorial review of topological invariants and the methods to control parameters in the Hamiltonians of neutral atoms. Next, topological quantum phases in optical lattices are introduced in some detail, especially several celebrated models, such as the Su–Schrieffer–Heeger model, the Hofstadter–Harper model, the Haldane model and the Kane–Mele model. The theoretical proposals and experimental implementations of these models are discussed. Notably, many of these models cannot be directly realized in conventional solid-state experiments. The newly developed methods for probing the intrinsic properties of the topological phases in cold-atom systems are also reviewed. Finally, some topological phases with cold atoms in the continuum and in the presence of interactions are discussed, and an outlook on future work is given.  相似文献   

17.
The feasibility of resonance transfer of quantum information from one double-level atom to another that is at an arbitrary distance from the former one has been proved. Symmetric and antisymmetric combinations of the wave functions of individual atoms are considered. When taking into account the interatomic dipole–dipole interaction, a certain energy corresponds to each wave function. A solution has been found to a system of equations for the amplitudes of the probability that a resonance photon will be absorbed by one of the system atoms, and it has been shown that the interaction of the system with actual photons has the result that the wave function of the final state of the system can be represented as a linear combination of the functions < 00|, < 0n|, and < n0| corresponding to the ground and excited states of individual atoms. The amplitude of the probability of each of these states depends on the interatomic distance and on the parameters of the action of actual photons on atoms. Three types of solution to the system of equations have been investigated for the resonance and nonresonance absorption of photons and different interatomic distances. It has been shown that when atoms are at an infinite distance from one another, so that there is no dipole–dipole interaction of atoms, quantum information can be transferred from one atom to another with a characteristic time considerably shorter than the time it takes for a photon to cover the interatomic distance. This effect is referred to as the effect of quantum teleportation in a system of resonance atoms.  相似文献   

18.
We report on the controlled insertion of individual Cs atoms into an ultracold Rb gas at ≈400 nK. This requires one to combine the techniques necessary for cooling, trapping and manipulating single laser cooled atoms around the Doppler temperature with an experiment to produce ultracold degenerate quantum gases. In our approach, both systems are prepared in separated traps and then combined. Our results pave the way for coherent interaction between a quantum gas and a single or few neutral atoms of another species.  相似文献   

19.
刘彦霞  张云波 《物理学报》2019,68(4):40304-040304
作为构成量子多体系统的基本单元,一维少体系统的研究不仅可以在理论上为多体系统的量子关联及动力学等性质提供更为基本的理解,也可以为实验上制备多体系统提供更加方便和功能更加全面的方法.本文回顾了冷原子物理中一维少体系统最新的实验和理论进展.首先介绍了少体实验中实现的谐振子势阱中确定原子数的精确制备,亚稳态势阱和双阱系统中原子的隧穿,以及强相互作用下等效自旋链的实验结果.然后深度解析了理论研究方面,特别是基于精确可解模型的一些重要结果,包括亚稳态势阱中相互作用原子的隧穿概率,以及相应实验上常见势阱的能谱分析、密度分布、隧穿动力学以及强相互作用极限下的有效自旋链模型等.  相似文献   

20.
《Physics letters. A》2020,384(7):126152
Derived from quantum waves immersed in an Abelian gauge potential, the quasiperiodic Aubry-André-Harper (AAH) model is a simple yet powerful Hamiltonian to study the Anderson localization of ultracold atoms. Here, we investigate the localization properties of ultracold atoms in quasiperiodic optical lattices subject to a non-Abelian gauge potential, which are depicted by non-Abelian AAH models. We identify that the non-Abelian AAH models can bear the self-duality. We analyze the localization of such non-Abelian self-dual optical lattices, revealing a rich phase diagram driven by the non-Abelian gauge potential involved: a transition from a pure delocalization phase, then to coexistence phases, and finally to a pure localization phase. This is in stark contrast to the Abelian counterpart that does not support the coexistence phases. Our results establish the connection between localization and gauge symmetry, and thus comprise a new insight on the fundamental aspects of localization in quasiperiodic systems, from the perspective of non-Abelian gauge potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号