首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the interplay between superfluidity and magnetism in a multicomponent gas of ultracold fermions. Ward-Takahashi identities constrain possible mean-field states describing order parameters for both pairing and magnetization. The structure of global phase diagrams arises from competition among these states as functions of anisotropies in chemical potential, density, or interactions. They exhibit first and second order phase transition as well as multicritical points, metastability regions, and phase separation. We comment on experimental signatures in ultracold atoms.  相似文献   

2.
We review some recent progresses on the study of ultracold Fermi gases with synthetic spin-orbit coupling.In particular,we focus on the pairing superfluidity in these systems at zero temperature.Recent studies have shown that different forms of spin-orbit coupling in various spatial dimensions can lead to a wealth of novel pairing superfluidity.A common theme of these variations is the emergence of new pairing mechanisms which are direct results of spin-orbit-coupling-modified single-particle dispersion spectra.As different configurations can give rise to single-particle dispersion spectra with drastic differences in symmetry,spin dependence and low-energy density of states,spin-orbit coupling is potentially a powerful tool of quantum control,which,when combined with other available control schemes in ultracold atomic gases,will enable us to engineer novel states of matter.  相似文献   

3.
We develop an extension of the well-known BCS-theory to systems with trapped fermionic atoms. The theory fully includes the quantized energy levels in the trap. The key ingredient is to model the attractive interaction between two atoms by a pseudo-potential which leads to a well defined scattering problem and consequently to a BCS-theory free of divergences. We present numerical results for the BCS critical temperature and the temperature dependence of the gap. They are used as a test of existing semi-classical approximations. Received 18 December 1998  相似文献   

4.
By selecting two dressed rotational states of ultracold polar molecules in an optical lattice, we obtain a highly tunable generalization of the t-J model, which we refer to as the t-J-V-W model. In addition to XXZ spin exchange, the model features density-density interactions and density-spin interactions; all interactions are dipolar. We show that full control of all interaction parameters in both magnitude and sign can be achieved independently of each other and of the tunneling. As a first step towards demonstrating the potential of the system, we apply the density matrix renormalization group method to obtain the 1D phase diagram of the simplest experimentally realizable case. Specifically, we show that the tunability and the long-range nature of the interactions in the t-J-V-W model enable enhanced superfluidity. Finally, we show that Bloch oscillations in a tilted lattice can be used to probe the phase diagram experimentally.  相似文献   

5.
Time of flight images reflect the momentum distribution of the atoms in the trap, but the spatial noise in the image holds information on more subtle correlations. Using bosonization, we study such correlations in generic 1D systems of ultracold fermions. We show how pairing as well as spin and charge density wave correlations may be identified and extracted from time of flight images. These incipient orders manifest themselves as power-law singularities in the noise correlations, that depend on the Luttinger parameters, which suggests a general experimental technique to obtain them.  相似文献   

6.
In the Mott-insulator regime, two species of ultracold atoms in an optical lattice can exhibit the low-energy counterflow motion. We construct effective Hamiltonians for the three classes of the two-species (fermion-fermion, boson-boson, and boson-fermion-type) insulators and reveal the conditions when the resulting ground state supports super-counter-fluidity (SCF), with the alternative being phase segregation. We emphasize a crucial role of breaking the isotopic symmetry between the species for realizing the SCF phase.  相似文献   

7.
王永俊  刘先锋  韩玖荣 《中国物理 B》2009,18(12):5301-5307
This paper studies the superfluidity of ultracold spin-2 Bose atoms with weak interactions in optical lattices by calculating the excitation energy spectrum using the Bogoliubov approach. The energy spectra exhibit the characteristics of the superfluid-phase explicitly and it finds the nonvanishing critical speeds of superfluid. The obtained results display that the critical speeds of superfluid are different for five spin components and can be controlled by adjusting the lattice parameters in experiments. Finally it discusses the feasibilities of implementing and measuring superfluid.  相似文献   

8.
Baryon and quark superfluidity in the cooling of neutron stars are investigated. Future observations will allow us to constrain combinations of the neutron or Lambda-hyperon pairing gaps and the star's mass. However, in a hybrid star with a mixed phase of hadrons and quarks, quark gaps larger than a few tenths of an MeV render quark matter virtually invisible for cooling. If the quark gap is smaller, quark superfluidity could be important, but its effects will be nearly impossible to distinguish from those of other baryonic constituents.  相似文献   

9.
We investigate the stability of superflow of paired fermions in an optical lattice. We show that there are two distinct dynamical instabilities which limit the superflow in this system. One dynamical instability occurs when the superfluid stiffness becomes negative; this evolves, with increasing pairing interaction, from the fermion pair breaking instability to the well-known dynamical instability of lattice bosons. The second, more interesting, dynamical instability is marked by the emergence of a transient atom density wave. Both dynamical instabilities can be experimentally accessed by tuning the pairing interaction and the fermion density.  相似文献   

10.
We calculate the energy spectrum of three identical fermionic ultracold atoms in two different internal states confined in a two-dimensional anisotropic harmonic trap. Using the solutions of the corresponding two-body problems obtained in our previous work (Chen et al 2020 Phys. Rev. A 101, 053624), we derive the explicit transcendental equation for the eigen-energies, from which the energy spectrum is derived. Our results can be used for the calculation of the 3rd Virial coefficients or the studies of few-body dynamics.  相似文献   

11.
It has been an important goal to achieve higher or even room temperature superconductivity,since the discovery of high Tc superconductors in 1986,with a typical maximum transition temperature Tc of around 95 K at ambien pressure[1]or up to 164 K for the Hg-based cuprates under high pressure[2].The typical Tc/TF is only around 0.05 or less,where TF denotes the Fermi temperature.There have been a few other families of superconductors,including the iron-based[3],heavy fermion[4]and organic superconductors[5].Their maximum attainable Tc/TF has not been able to exceed that of the cuprates.Other notable superconductors include the recently discovered H2S with a record high Tc=203 K under an enormous high pressure of 90 GPa[6],and the monolayer FeSe/SrTiO3 superconductors with a gap opening temperature up to 100 K[7].  相似文献   

12.
We propose an experiment to directly probe the non-abelian statistics of Majorana fermions by braiding them in an s-wave superfluid of ultracold atoms. We show that different orders of braiding operations give orthogonal output states that can be distinguished through Raman spectroscopy. Realization of Majorana states in an s-wave superfluid requires strong spin-orbital coupling and a controllable Zeeman field in the perpendicular direction. We present a simple laser configuration to generate the artificial spin-orbital coupling and the required Zeeman field in the dark-state subspace.  相似文献   

13.
Spatial correlations are observed in an ultracold gas of fermionic atoms close to a Feshbach resonance. The correlations are detected by inducing spin-changing rf transitions between pairs of atoms. We observe the process in the strongly interacting regime for attractive as well as for repulsive atom-atom interactions and both in the regime of high and low quantum degeneracy. The observations are compared with a two-particle model that provides theoretical predictions for the measured rf transition rates.  相似文献   

14.
We investigate the nature of trions, pairing, and quantum phase transitions in one-dimensional strongly attractive three-component ultracold fermions in external fields. Exact results for the ground-state energy, critical fields, magnetization and phase diagrams are obtained analytically from the Bethe ansatz solutions. Driven by Zeeman splitting, the system shows exotic phases of trions, bound pairs, a normal Fermi liquid, and four mixtures of these states. Particularly, a smooth phase transition from a trionic phase into a pairing phase occurs as the highest hyperfine level separates from the two lower energy levels. In contrast, there is a smooth phase transition from the trionic phase into a normal Fermi liquid as the lowest level separates from the two higher levels.  相似文献   

15.
We demonstrate a probe for nearest-neighbor correlations of fermionic quantum gases in optical lattices. It gives access to spin and density configurations of adjacent sites and relies on creating additional doubly occupied sites by perturbative lattice modulation. The measured correlations for different lattice temperatures are in good agreement with an ab initio calculation without any fitting parameters. This probe opens new prospects for studying the approach to magnetically ordered phases.  相似文献   

16.
We study a system of periodic Bose-condensed atoms coupled to cavity photons using the input-output formalism of [14]. We show for the first time that the cavity will either act as a through-pass Lorentzian filter when the superfluid fraction of the condensate is minimum, or completely reflect the input field when the superfluid fraction is maximum. We show that by monitoring the ratio between the transmitted field and the reflected field, one can estimate the superfluid fraction.  相似文献   

17.
Two issues are treated in this work. (i) The generic fact that, if a fermionic superfluid in the BCS regime overflows from a narrow container into a much wider one, pairing is much suppressed at the overflow point. Physical examples where this feature may play an important role are discussed. (ii) A Thomas-Fermi approach to inhomogeneous superfluid Fermi systems is presented and shown to work well in cases where the local density approximation breaks down.  相似文献   

18.
Using the exact Bethe ansatz solution of the Hubbard model and Luttinger liquid theory, we investigate the density profiles and collective modes of one-dimensional ultracold fermions confined in an optical lattice with a harmonic trapping potential. We determine a generic phase diagram in terms of a characteristic filling factor and a dimensionless coupling constant. The collective oscillations of the atomic mass density, a technique that is commonly used in experiments, provide a signature of the quantum phase transition from the metallic phase to the Mott-insulator phase. A detailed experimental implementation is proposed.  相似文献   

19.
《Comptes Rendus Physique》2018,19(6):365-393
Ultracold atomic gases provide a fantastic platform to implement quantum simulators and investigate a variety of models initially introduced in condensed matter physics or other areas. One of the most promising applications of quantum simulation is the study of strongly correlated Fermi gases, for which exact theoretical results are not always possible with state-of-the-art approaches. Here, we review recent progress of the quantum simulation of the emblematic Fermi–Hubbard model with ultracold atoms. After introducing the Fermi–Hubbard model in the context of condensed matter, its implementation in ultracold atom systems, and its phase diagram, we review landmark experimental achievements, from the early observation of the onset of quantum degeneracy and superfluidity to the demonstration of the Mott insulator regime and the emergence of long-range anti-ferromagnetic order. We conclude by discussing future challenges, including the possible observation of high-Tc superconductivity, transport properties, and the interplay of strong correlations and disorder or topology.  相似文献   

20.
The spectrum of cold fermionic atoms is studied in a trilayer honeycomb optical lattice subjected to a perpendicular effective magnetic field,which is created with optical means. In the low energy approximation,the spectrum shows unconventional Landau levels,which are proportional to the 3/2 power of integer numbers. The zoro modes exist and the quasiparticles are chiral. It is also proposed to identify the unconventional Landau levels via probing the dynamic structure factor of the system with Bragg spectr...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号