首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A long-standing open problem in quantum information theory is to find the classical capacity of an optical communication link, modeled as a Gaussian bosonic channel. It has been conjectured that this capacity is achieved by a random coding of coherent states using an isotropic Gaussian distribution in phase space. We show that proving a Gaussian minimum entropy conjecture for a quantum-limited amplifier is actually sufficient to confirm this capacity conjecture, and we provide a strong argument towards this proof by exploiting a connection between quantum entanglement and majorization theory.  相似文献   

2.
《Physics letters. A》2020,384(27):126730
Recently, there have been considerable progresses on the bounds of various quantum channel capacities for bosonic Gaussian channels. Especially, several upper bounds for the classical capacity and the quantum capacity on the bosonic Gaussian channels, via a technique known as quantum entropy power inequality, have been shed light on understanding the mysterious quantum-channel-capacity problems. However, upper bounds for the private capacity on quantum channels are still missing for the study on certain universal upper bounds. Here, we derive upper bounds on the private capacity for bosonic Gaussian channels involving a general Gaussian-noise case through the conditional quantum entropy power inequality.  相似文献   

3.
In this paper, we consider the classical capacity problem for Gaussian measurement channels. We establish Gaussianity of the average state of the optimal ensemble in the general case and discuss the Hypothesis of Gaussian Maximizers concerning the structure of the ensemble. Then, we consider the case of one mode in detail, including the dual problem of accessible information of a Gaussian ensemble. Our findings are relevant to practical situations in quantum communications where the receiver is Gaussian (say, a general-dyne detection) and concatenation of the Gaussian channel and the receiver can be considered as one Gaussian measurement channel. Our efforts in this and preceding papers are then aimed at establishing full Gaussianity of the optimal ensemble (usually taken as an assumption) in such schemes.  相似文献   

4.
The study of quantum channels is an important field and promises a wide range of applications, because any physical process can be represented as a quantum channel that transforms an initial state into a final state. Inspired by the method of performing non-unitary operators by the linear combination of unitary operations, we proposed a quantum algorithm for the simulation of the universal single-qubit channel, described by a convex combination of “quasi-extreme” channels corresponding to four Kraus operators, and is scalable to arbitrary higher dimension. We demonstrated the whole algorithm experimentally using the universal IBM cloud-based quantum computer and studied the properties of different qubit quantum channels. We illustrated the quantum capacity of the general qubit quantum channels, which quantifies the amount of quantum information that can be protected. The behavior of quantum capacity in different channels revealed which types of noise processes can support information transmission, and which types are too destructive to protect information. There was a general agreement between the theoretical predictions and the experiments, which strongly supports our method. By realizing the arbitrary qubit channel, this work provides a universally- accepted way to explore various properties of quantum channels and novel prospect for quantum communication.  相似文献   

5.
Gaussian steering is used to characterize the intrinsic quantum correlation of Gaussian states under Gaussian measurement. Here we study the generation of one‐way Gaussian steering and the conversion of one‐way Gaussian steering. It is found that one‐way Gaussian steering could be generated by using Gaussian channels, either the Gaussian lossy channel or the Gaussian amplification channel. Exploiting the one‐way Gaussian steering in a two‐partite quantum system consists of two subsystems marked with A and B, one‐way Gaussian steering (steering from A to B) can be converted to the other one‐way Gaussian steering (steering from B to A) using linear optics, and vice versa.  相似文献   

6.
We continue the study of similarities between quantum information theory and theory of classical Gaussian signals. The possibility of using quantum entropy for classical Gaussian signals was explored a long time ago. Recently we demonstrated that some basic quantum channels can be represented as linear transforms of classical Gaussian signals. Here we consider bipartite quantum systems and show that an important quantum channel given by the partial trace operation has a simple classical representation, namely, a coordinate projection of a classical “prequantum signal.” We also consider the classical signal realization of quantum channels corresponding to state transforms in the process of measurement. The latter induces a difficult interpretational problem — the output signal corresponding to one system depends on a measurement that has been done on the second system. This situation might be interpreted as a sign of quantum nonlocality, action at a distance. Although we do not exclude such a possibility, i.e., that, in complete accordance with Bell, the creation of a realistic prequantum model is impossible without action at a distance, we found another interpretation of this situation that is not related to quantum nonlocality.  相似文献   

7.
This paper studies the difficulty of discriminating between an arbitrary quantum channel and a “replacer" channel that discards its input and replaces it with a fixed state. The results obtained here generalize those known in the theory of quantum hypothesis testing for binary state discrimination. We show that, in this particular setting, the most general adaptive discrimination strategies provide no asymptotic advantage over non-adaptive tensor-power strategies. This conclusion follows by proving a quantum Stein’s lemma for this channel discrimination setting, showing that a constant bound on the Type I error leads to the Type II error decreasing to zero exponentially quickly at a rate determined by the maximum relative entropy registered between the channels. The strong converse part of the lemma states that any attempt to make the Type II error decay to zero at a rate faster than the channel relative entropy implies that the Type I error necessarily converges to one. We then refine this latter result by identifying the optimal strong converse exponent for this task. As a consequence of these results, we can establish a strong converse theorem for the quantum-feedback-assisted capacity of a channel, sharpening a result due to Bowen. Furthermore, our channel discrimination result demonstrates the asymptotic optimality of a non-adaptive tensor-power strategy in the setting of quantum illumination, as was used in prior work on the topic. The sandwiched Rényi relative entropy is a key tool in our analysis. Finally, by combining our results with recent results of Hayashi and Tomamichel, we find a novel operational interpretation of the mutual information of a quantum channel \({\mathcal{N}}\) as the optimal Type II error exponent when discriminating between a large number of independent instances of \({\mathcal{N}}\) and an arbitrary “worst-case” replacer channel chosen from the set of all replacer channels.  相似文献   

8.
We investigate entanglement transmission over an unknown channel in the presence of a third party (called the adversary), which is enabled to choose the channel from a given set of memoryless but non-stationary channels without informing the legitimate sender and receiver about the particular choice that he made. This channel model is called an arbitrarily varying quantum channel (AVQC). We derive a quantum version of Ahlswede’s dichotomy for classical arbitrarily varying channels. This includes a regularized formula for the common randomness-assisted capacity for entanglement transmission of an AVQC. Quite surprisingly and in contrast to the classical analog of the problem involving the maximal and average error probability, we find that the capacity for entanglement transmission of an AVQC always equals its strong subspace transmission capacity. These results are accompanied by different notions of symmetrizability (zero-capacity conditions) as well as by conditions for an AVQC to have a capacity described by a single-letter formula. In the final part of the paper the capacity of the erasure-AVQC is computed and some light shed on the connection between AVQCs and zero-error capacities. Additionally, we show by entirely elementary and operational arguments motivated by the theory of AVQCs that the quantum, classical, and entanglement-assisted zero-error capacities of quantum channels are generically zero and are discontinuous at every positivity point.  相似文献   

9.
A potential acceleration of a quantum open system is of fundamental interest in quantum computation, quantum communication, and quantum metrology. In this paper, we investigate the "quantum speed-up capacity" which reveals the potential ability of a quantum system to be accelerated. We explore the evolutions of the speed-up capacity in different quantum channels for two-qubit states. We find that although the dynamics of the capacity is varying in different kinds of channels, it is positive in most situations which are considered in the context except one case in the amplitude-damping channel. We give the reasons for the different features of the dynamics. Anyway, the speed-up capacity can be improved by the memory effect. We find two ways which may be used to control the capacity in an experiment: selecting an appropriate coefficient of an initial state or changing the memory degree of environments.  相似文献   

10.
Superactivation is the property that two channels with zero quantum capacity can be used together to yield a positive capacity. Here we demonstrate that this effect exists for a wide class of inequivalent channels, none of which can simulate each other. We also consider the case where one of two zero-capacity channels is applied, but the sender is ignorant of which one is applied. We find examples where the greater the entropy of mixing of the channels, the greater the lower bound for the capacity. Finally, we show that the effect of superactivation is rather generic by providing an example of superactivation using the depolarizing channel.  相似文献   

11.
We investigate Gaussian quantum states in view of their exceptional role within the space of all continuous variables states. A general method for deriving extremality results is provided and applied to entanglement measures, secret key distillation and the classical capacity of bosonic quantum channels. We prove that for every given covariance matrix the distillable secret key rate and the entanglement, if measured appropriately, are minimized by Gaussian states. This result leads to a clearer picture of the validity of frequently made Gaussian approximations. Moreover, it implies that Gaussian encodings are optimal for the transmission of classical information through bosonic channels, if the capacity is additive.  相似文献   

12.
Recently it was shown that the main distinguishing features of quantum mechanics (QM) can be reproduced by a model based on classical random fields, the so-called prequantum classical statistical field theory (PCSFT). This model provides a possibility to represent averages of quantum observables, including correlations of observables on subsystems of a composite system (e.g., entangled systems), as averages with respect to fluctuations of classical (Gaussian) random fields. We consider some consequences of the PCSFT for quantum information theory. They are based on our previous observation that classical Gaussian channels (important in classical signal theory) can be represented as quantum channels. Now we show that quantum channels can be represented as classical linear transforms of classical Gaussian signals.  相似文献   

13.
We determine the optimal rates of universal quantum codes for entanglement transmission and generation under channel uncertainty. In the simplest scenario the sender and receiver are provided merely with the information that the channel they use belongs to a given set of channels, so that they are forced to use quantum codes that are reliable for the whole set of channels. This is precisely the quantum analog of the compound channel coding problem. We determine the entanglement transmission and entanglement-generating capacities of compound quantum channels and show that they are equal. Moreover, we investigate two variants of that basic scenario, namely the cases of informed decoder or informed encoder, and derive corresponding capacity results.  相似文献   

14.
Efficiently routing the quantum signals between different channels is essential in a quantum multichannel network.We investigate the quantum routing in a multi-cross-shaped waveguide coupled to driven three-level systems.Numerical results show that the high routing capacity transferring from the input channel to the other channels can be explicitly enhanced by effective reflection potentials. The proposed system may be utilized as a scalable quantum device to control single-photon routing.  相似文献   

15.
High-dimensional Hilbert spaces used for quantum communication channels offer the possibility of large data transmission capabilities. We propose a method of characterizing the channel capacity of an entangled photonic state in high-dimensional position and momentum bases. We use this method to measure the channel capacity of a parametric down-conversion state by measuring in up to 576 dimensions per detector. We achieve a channel capacity over 7 bits/photon in either the position or momentum basis. Furthermore, we provide a correspondingly high-dimensional separability bound that suggests that the channel performance cannot be replicated classically.  相似文献   

16.
赵生妹  刘静 《物理学报》2010,59(2):771-777
与经典通信相类似,量子高斯噪声是一种重要的量子噪声模型.这里,"经典"是相对于"量子"而言的.讨论量子高斯信道传送经典信息时的信息容量,也称量子信道的经典容量,是量子通信的热点问题之一.文中在量子高斯态、高斯熵性质和Holevo界基础上,给出单用户量子高斯信道的经典容量,借助多址量子信道的经典容量区域定理,通过坐标系变换方法,从理论上推导得到多用户量子高斯信道的经典容量区域.为了计算简便且不失一般性,计算过程将采用两输入、单输出的量子多址信道模型进行说明,结论可类推到n个输入、单输出的多址信道.  相似文献   

17.
彭永刚  巩龙 《光子学报》2014,40(9):1392-1396
用费米线性光学方法,提出无相互作用费米量子信道物理模型.用平稳量子高斯态协方差矩阵性质及Majorization不等式理论,推导出在平稳高斯输入态下费米量子信道最小输出熵的表达式.利用在n模费米系统添加一个额外模的方法,得到平稳高斯态和高斯态输出熵的关系|利用此关系式,借助在高斯输入态下费米信道最小输出熵值是可达的猜测,推导出无相互作用费米信道直积态容量的表达式.最后,用最小输出熵的迭代算法验证已推出的费米信道最小输出熵表达式正确性,数值计算结果表明:对于带噪声的无相互作用费米量子信道,已推出最小输出熵与数值计算结果的吻合度可以达到10e-9.  相似文献   

18.
We describe two quantum channels that individually cannot send any classical information without some chance of decoding error. But together a single use of each channel can send quantum information perfectly reliably. This proves that the zero-error classical capacity exhibits superactivation, the extreme form of the superadditivity phenomenon in which entangled inputs allow communication over zero-capacity channels. But our result is stronger still, as it even allows zero-error quantum communication when the two channels are combined. Thus our result shows a new remarkable way in which entanglement across two systems can be used to resist noise, in this case perfectly. We also show a new form of superactivation by entanglement shared between sender and receiver.  相似文献   

19.
It was demonstrated that the entanglement evolution of a specially designed quantum state in the bistochastic channel is asymmetric. In this work, we generalize the study of the quantum correlations, including entanglement and quantum discord, evolution asymmetry to various quantum channels. We found that the asymmetry of entanglement and quantum discord only occurs in some special quantum channels, and the behavior of the entanglement evolution may be quite different from the behavior of the quantum discord evolution. To quantum entanglement, in some channels it decreases monotonously with the increase of the quantum channel intensity. In some other channels, when we increase the intensity of the quantum channel, it decreases at first, then keeps zero for some time, and then rises up. To quantum discord, the evolution becomes more complex and you may find that it evolutes unsmoothly at some points. These results illustrate the strong dependence of the quantum correlations evolution on the property of the quantum channels.  相似文献   

20.
无相互作用费米量子信道直积态容量研究   总被引:1,自引:0,他引:1  
彭永刚  巩龙 《光子学报》2011,(9):1392-1396
用费米线性光学方法,提出无相互作用费米量子信道物理模型.用平稳量子高斯态协方差矩阵性质及Majorization不等式理论,推导出在平稳高斯输入态下费米量子信道最小输出熵的表达式.利用在n模费米系统添加一个额外模的方法,得到平稳高斯态和高斯态输出熵的关系;利用此关系式,借助在高斯输入态下费米信道最小输出熵值是可达的猜测...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号