首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It was found that selenium doping can suppress the charge-density-wave(CDW) order and induce bulk superconductivity in ZrTe_3. The observed superconducting dome suggests the existence of a CDW quantum critical point(QCP) in ZrTe_3-xSex near x ≈ 0.04. To elucidate the superconducting state near the CDW QCP, we measure the thermal conductivity of two ZrTe_(3-x)Se_x single crystals(x = 0.044 and 0.051) down to 80 m K. For both samples, the residual linear term κ_0/T at zero field is negligible, which is a clear evidence for nodeless superconducting gap. Furthermore, the field dependence of κ_0/T manifests a multigap behavior. These results demonstrate multiple nodeless superconducting gaps in ZrTe_(3-x)Se_x,which indicates conventional superconductivity despite of the existence of a CDW QCP.  相似文献   

2.
Dong Yan 《中国物理 B》2022,31(3):37406-037406
The relationship between charge-density-wave (CDW) and superconductivity (SC), two vital physical phases in condensed matter physics, has always been the focus of scientists' research over the past decades. Motivated by this research hotspot, we systematically studied the physical properties of the layered telluride chalcogenide superconductors CuIr$_{2-x}$Al$_{x}$Te$_{4}$ ($0 \leqslant x \leqslant 0.2$). Through the resistance and magnetization measurements, we found that the CDW order was destroyed by a small amount of Al doping. Meanwhile, the superconducting transition temperature ($T_{\rm c}$) kept changing with the change of doping amount and rose towards the maximum value of 2.75 K when $x=0.075$. The value of normalized specific heat jump ($\Delta C/\gamma T_{\rm c}$) for the highest $T_{\rm c}$ sample CuIr$_{1.925}$Al$_{0.075}$Te$_{4}$ was 1.53, which was larger than the BCS value of 1.43 and showed the bulk superconducting nature. In order to clearly show the relationship between SC and CDW states, we propose a phase diagram of $T_{\rm c}$ vs. doping content.  相似文献   

3.
Single crystals of Te-doped dichalcogenides 2H-NbSe2-xTex (x ---- 0, 0.10, 0.20) were grown by vapour transport method. The effect of Te doping on the superconducting and charge-density wave (CDW) transitions has been investigated. The sharp decrease of residual resistance ratio, RRR = R(3OOK)/R(SK), with increasing Te content was observed, indicating that the disorder in the conducting plane is induced by Te doping. Meanwhile the superconducting transition temperature, Tc, decreases monotonically with Te content. However, the CDW transition temperature, TCDW, shown by a small jump in the temperature dependence of the resistivity near 30 K, increases slightly. The results show that the suppression of superconductivity might be caused by the enhancement of CDW ordering. The disorder has little influence on the CDW ordering.  相似文献   

4.
We report 121Sb nuclear quadrupole resonance(NQR)measurements on kagome superconductor CsV3Sb5 with Tc=2.5 K.121Sb NQR spectra split after a charge density wave(CDW)transition at 94 K,which demonstrates a commensurate CDW state.The coexistence of the high temperature phase and the CDW phase between 91 K and 94 K manifests that it is a first order phase transition.The CDW order exhibits tri-hexagonal deformation with a lateral shift between the adjacent kagome layers,which is consistent with 2×2×2 superlattice modulation.The superconducting state coexists with CDW order and shows a conventional s-wave behavior in the bulk state.  相似文献   

5.
6.
We study theoretically the low-temperature phases of a two-component atomic Fermi gas with attractive s-wave interactions under conditions of rapid rotation. We find that, in the extreme quantum limit, when all particles occupy the lowest Landau level, the normal state is unstable to the formation of charge density wave (CDW) order. At lower rotation rates, when many Landau levels are occupied, we show that the low-temperature phases can be supersolids, involving both CDW and superconducting order.  相似文献   

7.
We report the occurrence of superconductivity in polycrystalline samples of ZrTe(3) at temperature 5.2 K at ambient pressure. The superconducting state coexists with the charge density wave (CDW) phase, which sets in at 63 K. The intercalation of Cu or Ag does not have any bearing on the superconducting transition temperature but suppresses the CDW state. The feature of a CDW anomaly in these compounds is clearly seen in the DC magnetization data. Resistivity data are analyzed in order to estimate the relative loss of carriers and reduction in the nested Fermi surface area upon CDW formation in ZrTe(3) and the intercalated compounds.  相似文献   

8.
Phase diagrams of d-wave superconductivity characterized by an order parameter Δ coexisting with charge-density waves (CDWs) characterized by an order parameter Σ were constructed for the two-dimensional Fermi surface (FS) appropriate to, e.g., cuprates. CDWs were considered as an origin of the pseudogap appearing at antinodal FS sections of the d(x2-y2) superconductor. Two types of the Σ-reentrance were found: with the temperature, T, and with the opening of the CDW sector, 2α. The angular plots in the momentum space for the resulting gap profile over the FS ('gap roses') were obtained. The gap patterns are rather involved, giving insight into the difficulties of the interpretation of photoemission spectra. It was shown that the Σ-Δ coexistence region exists even for the complete dielectric gapping due to the distinction between the superconducting and CDW order parameter symmetries. The checkerboard and unidirectional CDW configurations were examined, and both the phase diagrams and the behavior with T and α of the order parameters were found to differ. A more general case with a non-zero mismatch angle β between the superconducting lobes and the CDW sectors was analyzed, the case β = π/4 corresponding to the d(xy) symmetry of the superconducting order parameter. The phase diagrams were found to be sensitive to β-variations, showing that internal strains and external pressure can drastically affect the behavior of Σ(T) and Δ(T).  相似文献   

9.
The pressure dependence of the critical temperature T(c) and upper critical field H(c2)(T) has been measured up to 19 GPa in the layered superconducting material 2H-NbSe2. T(c)(P) has a maximum at 10.5 GPa, well above the pressure for the suppression of the charge density wave (CDW) order. Using an effective two-band model to fit H(c2)(T), we obtain the pressure dependence of the anisotropy in the electron-phonon coupling and Fermi velocities, which reveals the peculiar interplay between CDW order, Fermi surface complexity, and superconductivity in this system.  相似文献   

10.
A comparative study is made for the spin and charge structure around superconducting vortices and unitary impurities, by solving self-consistently an effective Hamiltonian including interactions for both antiferromagnetic spin-density wave (SDW) and d-wave superconducting orderings. Around vortices, we show the induction of an SDW two-dimensionally modulated with a period of eight lattice constants (8a(0)) and an associated charge-density wave (CDW) with a period of 4a(0), which explains very well recent experimental observations. In the case of unitary impurities, an SDW modulation with identical periodicity, but without an associated CDW, is also predicted.  相似文献   

11.
A one-dimensional charge-density wave (CDW) instability is shown to be responsible for the formation of the incommensurate modulation of the atomic lattice in the high-pressure phase of sulfur. The coexistence of, and competition between, the CDW and the superconducting state leads to the previously observed increase of T{c} up to 17 K, which we attribute to the suppression of the CDW instability, the same phenomenology found in doped layered dichalcogenides.  相似文献   

12.
Using angle-resolved photoemission spectroscopy we demonstrate that a normal-state pseudogap exists above T(N-IC) in one of the most studied two-dimensional charge-density wave (CDW) dichalcogenides 2H-TaSe(2). The initial formation of the incommensurate CDW is confirmed as being driven by a conventional nesting instability, which is marked by a pseudogap. The magnitude, character, and anisotropy of the 2D-CDW pseudogap bear considerable resemblance to those seen in superconducting cuprates.  相似文献   

13.
The differential tunnel conductance G S of the junction between a normal metal and a superconductor with a charge density wave (CDW) is calculated as a function of the voltage V across the junction. The results are averaged over the spread of superconducting and CDW energy gaps in the nanoscale-inhomogeneous superconductor. It is shown that, if both order parameters are nonzero, a dip-hump structure is formed beyond the superconducting gap of G S (V). If the phase of the CDW order parameter is not equal to π/2, a dip-hump structure will appear solely or mainly for one sign of the bias polarity. The results agree with the experimental data for Bi2Sr2CaCu2O8+δ and other high-temperature oxides  相似文献   

14.
Junyu Zong 《中国物理 B》2022,31(10):107301-107301
As a special order of electronic correlation induced by spatial modulation, the charge density wave (CDW) phenomena in condensed matters attract enormous research interests. Here, using scanning—tunneling microscopy in various temperatures, we discover a hidden incommensurate stripe-like CDW order besides the ($sqrt{7}$ × $sqrt{3}$) CDW phase at low-temperature of 4 K in the epitaxial monolayer 1T-VSe2} film. Combining the variable-temperature angle-resolved photoemission spectroscopic (ARPES) measurements, we discover a two-step transition of an anisotropic CDW gap structure that consists of two parts Δ1 and Δ2. The gap part Δ1 that closes around ~ 150 K is accompanied with the vanish of the ($sqrt{7}$ × $sqrt{3}$) CDW phase. While another momentum-dependent gap part Δ2 can survive up to ~ 340 K, and is suggested to the result of the incommensurate CDW phase. This two-step transition with anisotropic gap opening and the resulted evolution in ARPES spectra are corroborated by our theoretical calculation based on a phenomenological form for the self-energy containing a two-gap structure Δ1 + Δ2, which suggests different forming mechanisms between the ($sqrt{7}$ × $sqrt{3}$) and the incommensurate CDW phases. Our findings provide significant information and deep understandings on the CDW phases in monolayer 1T-VSe2} film as a two-dimensional (2D) material.  相似文献   

15.
The dependences of the differential tunneling conductance G on the voltage V across a junction in an external magnetic field H are calculated for two types of junctions involving normal or superconducting metals with charge density waves (CDWs). Junctions of the first type are asymmetric CDW metal (CDWM)-insulator-ferromagnet junctions. The results of calculations for these junctions demonstrate that there occurs splitting between the components of the conductance G(V) corresponding to the tunneling of electrons with spins aligned with the magnetic field H and opposite to it, as is the case with junctions containing a superconducting electrode instead of the CDWM electrode. Junctions of the second type are junctions between two normal or superconducting CDWM electrodes. For junctions with at least one normal CDWM electrode and H ≠ 0, the conductance G(V) also exhibits spin splitting. The form of the conductance G(V) for tunnel junctions of both types depends on the phase of the order parameter of the charge density waves.  相似文献   

16.
A phase diagram reflecting the main features of the typical phase diagram of cuprate superconductors has been studied within the framework of the Ginzburg-Landau phenomenology in the vicinity of a tetracritical point, which appears as a result of the competition of the superconducting and insulating pairing channels. The superconducting pairing under repulsive interaction corresponds to a two-component order parameter, whose relative phase is related to the orbital antiferromagnetic insulating ordering. Under weak doping, the insulating order coexists with the superconductivity at temperatures below the superconducting phase transition temperature and is manifested as a weak pseudogap above this temperature. A part of the pseudogap region adjacent to the superconducting state corresponds to developed fluctuations of the order parameter in the form of quasi-stationary states of noncoherent superconducting pairs and can be interpreted as a strong pseudogap. As the doping level is increased, the system exhibits a phase transition from the region of coexistence of the superconductivity and the orbital antiferromagnetism to the usual superconducting state. In this state, a region of developed fluctuations of the order parameter in the form of quasi-stationary states of uncorrelated orbital circular currents exists near the phase transition line.  相似文献   

17.
闫静  单磊  王越  肖志力  闻海虎 《中国物理 B》2008,17(6):2229-2235
Low-temperature specific heat in a dichalcogenide superconductor 2H-NbSe2 is measured in various magnetic fields. It is found that the specific heat can be described very well by a simple model concerning two components corresponding to vortex normal core and ambient superconducting region, separately. For calculating the specific heat outside the vortex core region, we use the Bardeen-Cooper Schrieffer (BCS) formalism under the assumption of a narrow distribution of the superconducting gaps. The field-dependent vortex core size in the mixed state of 2H-NbSe2, determined by using this model, can explain the nonlinear field dependence of specific heat coefficient γ(H), which is in good agreement with the previous experimental results and more formal calculations. With the high-temperature specific heat data, we can find that, in the multi-band superconductor 2H-NbSe2, the recovered density of states (or Fermi surface) below Tc under a magnetic field seems not to be gapped again by the charge density wave (CDW) gap, which suggests that the superconducting gap and the CDW gap may open on different Fermi surface sheets.  相似文献   

18.
We investigate the superconducting phase in the K(x)Ba(1-x)Fe2As2 122 compounds from moderate to strong hole-doping regimes. Using the functional renormalization group, we show that, while the system develops a nodeless anisotropic s(±) order parameter in the moderately doped regime, gapping out the electron pockets at strong hole doping drives the system into a nodal (cos k(x) + cos k(y))(cos k(x) - cos k(y)) d-wave superconducting state. This is in accordance with recent experimental evidence from measurements on KFe2As2 which observe a nodal order parameter in the extreme doping regime. The magnetic instability is strongly suppressed.  相似文献   

19.
We show that many observable properties of high-temperature superconductors can be obtained in the framework of a one-dimensional self-consistent model with included superconducting correlations. Analytical solutions for spin, charge, and superconductivity order parameters are found. The ground state of the model at low hole doping is a spin-charge solitonic superstructure. Increased doping leads to a transition to the superconducting phase. There is a region of doping where superconductivity, spin density wave, and charged stripe structure coexist. The charge density modulation appears in the vicinity of vortices (kinks in the 1D model) in the superconducting state.  相似文献   

20.
Peculiarities of the superconducting state (s and d pairing) are considered in the model of the pseudogap state induced by short-range order fluctuations of the dielectric (AFM (SDW) or CDW) type, which is based on the model of the Fermi surface with “hot spots.” A microscopic derivation of the Ginzburg-Landau expansion is given with allowance for all Feynman diagrams in perturbation theory in the electron interaction with short-range order fluctuations responsible for strong scattering in the vicinity of hot spots. The superconducting transition temperature is determined as a function of the effective pseudogap width and the correlation length of short-range order fluctuations. Similar dependences are derived for the main parameters of a superconductor in the vicinity of the superconducting transition temperature. It is shown, in particular, that the specific heat jump at the transition point is considerably suppressed upon a transition to the pseudogap region on the phase diagram.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号