首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
薄膜外延生长的计算机模拟   总被引:8,自引:0,他引:8       下载免费PDF全文
以Cu膜为例,用Monte-Carlo算法模拟了薄膜生长的随机过程,并提出了更加完善的模型.在合理选择原子间相互作用计算方法的基础上,考虑了原子的吸附、在生长表面的迁移及迁移所引起的近邻原子连带效应、从生长表面的脱附等过程.模拟计算了薄膜的早期成核情况以及表面粗糙度和相对密度.结果表明,随着衬底温度的升高或入射率的降低,沉积在衬底上的原子逐步由离散型分布向聚集状态过渡形成一些岛核,并且逐步由二维岛核向三维岛核过渡.在一定的原子入射率下,存在三个优化温度,成核率最高时的最大成核温度Tn、薄膜的表面粗糙度最低 关键词: Monte-Carlo算法 计算机模拟 薄膜生长  相似文献   

2.
Epitaxial Cu2O islands on a Cu(100) surface formed through oxidizing Cu(100) films at 600 degrees C in an ultrahigh vacuum transmission electron microscope were observed to undergo a shape transition from initially square shaped islands to elongated islands at a critical size of approximately 110 nm. Our experimental data on the elongation of Cu2O islands agree with the energetic calculations based on the balance between surface and interface energies and the elastic stress relaxation in the three-dimensional islands. We developed a kinetic model based on oxygen surface diffusion that fits well with the observed volume evolution of the Cu2O islands.  相似文献   

3.
Self-organized magnetic nanoparticles are obtained through selective silicidation of cobalt using a silicon substrate pre-structured with tri-dimensional gold islands as template. On the step bunches array of a vicinal Si(1 1 1) surface, gold deposition results in the formation of nanodroplets aligned along the step bunches. A subsequent cobalt deposition is performed onto this gold islands-covered Si surface, with two silicidation processes investigated: reactive deposition (RD) and solid phase reaction (SPR). The cobalt is converted into a non-magnetic silicide film except where the surface is locally masked by the gold islands, giving rise to cobalt nanomagnets which can be capped by a gold layer. A scanning tunneling microscopy comparative study of RD and SPR processes demonstrates that the former induces strong surface morphology changes while the latter preserves the pristine islands. Magnetic measurements performed with alternating gradient force magnetometry at room temperature are used to demonstrate the presence of ferromagnetic cobalt nanoparticles on SPR-processed samples. These nanomagnets show a clear in-plane anisotropy behavior.  相似文献   

4.
于洪滨  高波  盖峥  杨威生 《物理学报》1997,46(3):505-510
用扫描隧道显微镜,在小隧道阻抗的条件下(小偏压和大隧道电流),通过移动针尖,实现了在室温下对真空蒸镀在高定向石墨上的、由几万个原子组成的纳米尺度金岛的操纵.在大隧道阻抗的情形下,用同一个针尖可对操纵的结果进行观察,而不会对金岛产生扰动.这种可控的操纵是通过当钨针尖与金岛间距离很近时形成的金属间黏附力大于金岛与石墨间的摩擦力而实现的 关键词:  相似文献   

5.

Many properties of single-walled carbon nanotube (SWCNT) arrays are determined by the size and surface coverage of the metal catalyst islands from which they are nucleated. Methods using thermal fragmentation of continuous metal films frequently fail to produce size-uniform islands. Hybrid numerical simulations are used to propose a new approach to controlled self-assembly of Ni islands of the required size and surface coverage using tailored gas-phase generated nanocluster fluxes and adjusted surface temperatures. It is shown that a maximum surface coverage of 0.359 by 0.96–1.02 nm Ni catalyst islands can be achieved at a low surface temperature of 500 K. Optimized growth of Ni catalyst islands can lead to fabrication of size-uniform SWCNT arrays, suitable for numerous nanoelectronic applications. This approach is deterministic and is applicable to a range of nanoassemblies where high surface coverage and island size uniformity are required.

  相似文献   

6.
The dynamics and coarsening of TiSi2 islands on Si(111) surfaces are studied in real time with photoelectron emission microscopy. A significant fraction of events are observed in which nearby islands move attractively toward each other and subsequently coalesce. It is proposed that attractive island migration is due to the growth-decay flow of the island edges driven by a nonuniform surface concentration around the islands. The local surface concentration is induced by the neighboring islands. This coarsening mechanism should significantly affect the evolution of the island distribution.  相似文献   

7.
Long-range electronic interactions between Br adatom islands, which are formed at approximately 600 K, on Cu(111) are mediated by substrate surface-state electrons at that elevated temperature. Using scanning tunneling microscopy at 4 K, we have quantified nearest neighbor island separations and found favored spacings to be half-multiples of the Fermi wavelength of Cu(111). The strong interaction potential and decay length of the interisland interactions are discussed in terms of the interaction of Br with the substrate surface state.  相似文献   

8.
When strained Stranski-Krastanow islands are used as "self-assembled quantum dots," a key goal is to control the island position. Here we show that nanoscale grooves can control the nucleation of epitaxial Ge islands on Si(001), and can drive lateral motion of existing islands onto the grooves, even when the grooves are very narrow and shallow compared to the islands. A position centered on the groove minimizes energy. We use as prototype grooves the trenches which form naturally around islands. During coarsening, the shrinking islands move laterally to sit directly astride that trench. In subsequent growth, we demonstrate that islands nucleate on the "empty trenches" which remain on the surface after complete dissolution of the original islands.  相似文献   

9.
Atomic force microscopic (AFM) images of an H–Si(1 1 1) surface having the atomically flat structure were measured in a normal laboratory atmosphere. By monitoring time series changes in the AFM images, we found that islands grow on the surface. A comparison of the growth of islands with changes in Fourier-transfer IR (FTIR) spectra showed that the islands are formed by organic contaminants adsorbed from the air in the laboratory. Starting chiefly from the step sites, the islands extend to cover the whole surface in about 2 h. Following the adsorption of the organic contaminants, oxidation of the Si surface proceeds gradually. Although the growth rate was slightly slower, similar growth of islands was observed in a plastic bag filled with nitrogen gas with high purity.  相似文献   

10.
The formation of dislocation-rich and dislocation-free silicon islands during growth in the absence of mechanical stresses has been studied by scanning tunneling microscopy. The rounded shape of islands obtained at growth temperatures of 400–500°C on the oxidized Si(111) surface is associated with the presence of dislocations within them. The transfer of atoms from the oxidized surface to the islands occurs due to the barrier of the potential energy at the SiO2/Si boundary. The {111} and {311} facets dominate in the shape of the islands grown at 500–550°C. Their appearance indicates the absence of the threading dislocations in the islands and that the growth is limited by the stage of the nucleation of a new atomic layer.  相似文献   

11.
A significant increase in the surface concentration of cesium atoms intercalated under graphene islands on rhodium has been revealed when annealing the adsorbed layer in a ultrahigh vacuum. Heating leads to a decrease in the area of graphene islands due to the solution of carbon atoms in the metal bulk. At the same time, the edge carbon atoms in the islands, which are coupled with the surface by chemisorptive forces, prevent the leakage of the alkali metal from under the islands. This leads to the significant compression of cesium and to an increase in its surface concentration under the islands by a factor of almost 10. The desorption of cesium is observed only after the complete thermal destruction of graphene islands.  相似文献   

12.
FIPOS technology forms islands of silicon isolated from a silicon substrate by (oxidised) porous silicon. The larger refractive index of the silicon islands suggests their use as optical waveguides. Sets of these silicon islands have been fabricated and the anticipated waveguiding has been observed at wavelengths of 1.15 and 1.3 μm in the silicon islands. However, the dominant waveguiding in these FIPOS structures is observed in the porous silicon between the silicon islands, close to the sample surface. A simple dynamic model of the anodisation process has been developed to explain the origin of this unexpected waveguiding.  相似文献   

13.
K. Kishi  A. Oka  N. Takagi  M. Nishijima  T. Aruga   《Surface science》2000,460(1-3):264-276
We have studied the growth mechanism of a Pd(100)-p(2×2)-p4g-Al surface alloy by scanning tunneling microscopy (STM). The surface alloy has a bilayer structure and is formed by annealing at 450–700 K (depending on the initial aluminum coverage) after the deposition of aluminum on Pd(100) at room temperature. The ratio of the surface-alloy coverage to the initial aluminum coverage is found to be constant (0.44) irrespective of the initial aluminum coverage from 0.5 monolayers (ML) up to 2 ML. The growth mechanism of the surface alloy is proposed on the basis of the STM measurements at various annealing temperatures. Upon annealing at 450 K, some of the surface aluminum atoms migrate into the bulk and, instead, palladium atoms come out to the surface. These palladium atoms react with aluminum atoms remaining on the surface to form a surface alloy. When the initial aluminum coverage is less than 1 ML, bilayer-high islands of the surface alloy with an average area of 100 nm2 are formed at 450–500 K, which diffuse on the terrace at 500–700 K and coalesce to form larger islands. A possible role of the percolation transition of aluminum islands in the formation of the surface alloy is discussed.  相似文献   

14.
We have investigated a room-temperature growth mode of ultrathin Ag films on a Si(111) surface with an Sb surfactant using STM in a UHV system. On the Sb-passivated Si surface, small sized islands were formed up to 1.1 ML. Flat Ag islands were dominant at 2.1 ML, coalescing into larger islands at 3.2 ML. Although the initial growth mode of Ag films on the Sb-terminated Si(111) surface was Volmer-Weber (island growth), the films were much more uniform than Ag growth on clean (Si(111) at the higher coverages. From the analysis of STM images of Ag films grown with and without an Sb surfactant, the uniform growth of Ag films using an Sb surfactant appears to be caused by the kinetic effects of Ag on the preadsorbed Sb layer. Our STM results indicated that Sb suppresses the surface diffusion of Ag atoms and increases the Ag-island density. The increased island density is believed to cause coalescence of Ag islands at higher coverages of Ag, resulting in the growth of atomically flat and uniform Ag islands on the Sb surfactant layer.  相似文献   

15.
I.V. Shvets  V. Kalinin 《Surface science》2007,601(15):3169-3178
The deposition of ultrathin Fe films on the Mo(1 1 0) surface at elevated temperatures results in the formation of distinctive nanowedge islands. The model of island formation presented in this work is based on both experiment and DFT calculations of Fe adatom hopping barriers. Also, a number of classical molecular dynamics simulations were carried out to illustrate fragments of the model. The islands are formed during a transition from a nanostripe morphology at around 2 ML coverage through a Bales-Zangwill type instability. Islands nucleate when the meandering step fronts are sufficiently roughened to produce a substantial overlap between adjacent steps. The islands propagate along the substrate [0 0 1] direction due to anisotropic diffusion/capture processes along the island edges. It was found that the substrate steps limit adatom diffusion and provide heterogeneous nucleation sites, resulting in a higher density of islands on a vicinal surface. As the islands can be several layers thick at their thinnest end, we propose that adatoms entering the islands undertake a so-called “vertical climb” along the sides of the island. This is facilitated by the presence of mismatch-induced dislocations that thread to the sides of the islands and produce local maxima of compressive strain. Dislocation lines also trigger initial nucleation on the surface with 2-3 ML Fe coverage. The sides of the nanowedge islands typically form along low-index crystallographic directions but can also form along dislocation lines or the substrate miscut direction.  相似文献   

16.
A combination of in situ X-ray photoelectron spectroscopy analysis and ex situ scanning electron- and atomic force microscopy has been used to study the formation of copper islands upon Cu deposition at elevated temperatures as a basis for the guided growth of copper islands. Two different temperature regions have been found: (I) up to 250 °C only close packed islands are formed due to low diffusion length of copper atoms on the surface. The SiO2 film acts as a barrier protecting the silicon substrate from diffusion of Cu atoms from oxide surface. (II) The deposition at temperatures above 300 °C leads to the formation of separate islands which are (primarily at higher temperatures) crystalline. At these temperatures, copper atoms diffuse through the SiO2 layer. However, they are not entirely dissolved in the bulk but a fraction of them forms a Cu rich layer in the vicinity of SiO2/Si interface. The high copper concentration in this layer lowers the concentration gradient between the surface and the substrate and, consequently, inhibits the diffusion of Cu atoms into the substrate. Hence, the Cu islands remain on the surface even at temperatures as high as 450 °C.  相似文献   

17.
李玮聪  邹志强  王丹  石高明 《物理学报》2012,61(6):66801-066801
锰的硅化物在微电子器件、自旋电子学器件等领域具有良好的应用前景, 了解锰的硅化物薄膜在硅表面的生长规律是其走向实际应用的关键步骤之一. 本文采用分子束外延方法在Si(100)-2× 1表面沉积了约4个原子层的锰薄膜, 并利用超高真空扫描隧道显微镜研究了该薄膜与硅衬底之间在250-750℃范围内的固相反应情况. 室温下沉积在硅衬底表面的锰原子与衬底不发生反应, 薄膜由无序的锰团簇构成; 当退火温度高于290℃时, 锰原子与衬底开始发生反应, 生成外形不规则的枝晶状锰硅化物和富锰的三维小岛; 325℃时, 衬底上开始形成平板状的MnSi小岛; 525℃时, 枝晶状锰硅化物完全消失, 出现平板状的MnSi1.7大岛; 高于600℃时, 富锰的三维小岛和平板状的MnSi小岛全部消失, 仅剩下平板状的MnSi1.7大岛. 这些结果说明退火温度决定了薄膜的形态和结构. 在大约600℃退火时岛的尺寸随着退火时间的延长而逐渐增大, 表明岛的生长遵从扩散限制的Ostwald熟化机理.  相似文献   

18.
Preformed clusters carrying surfactant are used as primary blocks for the building of nano structures. Self assembly of silver atom based clusters, soft landed on a HOPG surface, generates a large variety of new architectures depending on the nature and on the concentration of the impurities. Fractal shapes fragmented into multiple compact like islands, and chain like structures might be formed. A strong local enhancement of the silver atom mobility at the surface of islands is responsible for those morphology changes.  相似文献   

19.
Yong Liang  Dawn A. Bonnell   《Surface science》1994,310(1-3):128-134
Surface structures and chemistry of the annealed SrTiO3(001) have been studied by scanning tunneling microscopy and Auger electron spectroscopy. Our STM results show that islands arc formed on an originally smooth surface after annealing in ultra high vacuum at a temperature of 1300°C. Tunneling spectra show that the islands exhibit a different electronic structure than that of SrTiO3, with an apparent bandgap of 6 eV rather than 3.2 eV. Auger electron spectroscopy indicates that annealing yields strontium enrichment at the surface. The nature of the islands and change of surface chemistry are discussed in terms of correlation of the STM and Auger results.  相似文献   

20.
The understanding and control of structures at the surface of crystals is a fashionable topic nowadays. The role of an electric heating current in shaping the morphology of vicinal (111) and (001) silicon surfaces during sublimation in ultra-high vacuum is well known. Less known is the behaviour of surface features when the crystal is in contact with its own saturated vapour, and thus at equilibrium. We report here the observation by reflection electron microscopy of two-dimensional, micrometre-sized silicon islands on a resistively heated Si(001) substrate held at equilibrium (vanishing super- and undersaturation) at temperatures between 1000 and 1100°C. Surprisingly, the islands are seen to perform a gliding motion at a constant velocity in or against the current direction, depending on the island reconstruction. The value of the velocity is, on the contrary, independent of island reconstruction and size. A simple model based on adatom electromigration is discussed, that allows us to account for all observed features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号