首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stable complexes of oligomers of polyether (oxyethylated glycerol derivatives) with a chlorine anion have first been registered in negative-ion electrospray ionization mass spectra. The results of molecular dynamics simulation demonstrate that the stabilization of such complexes in the gas phase can be due to the formation of a quasicyclic structure of the polymer chain around the chlorine anion and its coordination by CH2- and OH- groups of the oligomer. This structure is inverted towards the known quasicyclic structure of polyethers, in which metal cations are coordinated by oxygen atoms of ether groups.  相似文献   

2.
The vibrational features and molecular structures of complexes formed by a series of uranyl–salophen receptors with simple anions, such as Cl?, H?, and HCOO?, have been investigated in the gas phase. Spectra of the anionic complexes were studied in the $\tilde \nu $ =800–1800 cm?1 range by mass‐selective infrared multiple photon dissociation (IRMPD) spectroscopy with a continuously tunable free‐electron laser. The gas‐phase decarboxylation of the formate adducts produces uranyl–salophen monohydride anions, which have been characterized for the first time and reveal a strong U?H bond, the nature of which has been elucidated theoretically. The spectra are in excellent agreement with the results obtained from high‐quality ab initio calculations, which provided the structure and binding features of the anion–receptor complexes.  相似文献   

3.
In this work, the encapsulations of halide ions including F?, Cl?, and Br? by cyclic peptide nanocapsule as ion carrier (F?, Cl?, and Br? @(Ala4...Ala4)) were investigated using the dispersion corrected density functional theory (DFT) employing CAM-B3LYP functional and the 6–311?+?G (d, p) basis set in the gas phase. The electronic binding energy (Ebind), binding enthalpy (Hbind), and binding Gibbs free energy (Gbind) for each anion were calculated and showed that the stability order of the complexes based on their calculated Ebind is F??>?Cl??>?Br? @(Ala4...Ala4). The calculated value of Gbind for F? @(Ala4...Ala4) was ??29.77 kcal/mol showing the formation of this complex is thermodynamically favorable while the formation of Br? @(Ala4...Ala4) is 14.35 kcal/mol which shows that the encapsulation of Br? is not possible. The calculated value of Gbind for Cl? @(Ala4...Ala4) was ??0.57 kcal/mol which shows that Cl? ion can be reversibly stored inside the nanocapsule. The NBO analysis was also performed to investigate the charge transfer between two cyclic peptides in the complexes and also between the anion and the nanocapsule. The NBO analysis showed that the strongest hydrogen bonds between two cyclic peptides are in the complex.  相似文献   

4.
Anion complexes of anion‐responsive π‐electronic molecules can behave as pseudo π‐electronic anions providing various ion pairs in combination with countercations. In this study, single crystals of ion‐pairing assemblies comprising porphyrin–AuIII complexes and Cl? complexes of dipyrrolyldiketone BF2 complexes were prepared from 1:1 mixtures of anion receptors and the Cl? salts of cationic porphyrins in solution. In the solid state, the ion pairs formed characteristic assemblies, depending on the substituents of the anion receptors and porphyrin–AuIII complexes. Theoretical calculations on the ion pairs revealed that the stacking structures are stabilized by compensating positive and negative charges as well as π–π interactions.  相似文献   

5.
The formation and structural features of negatively charged aggregates of sodium bis(2‐ethylhexyl)sulfosuccinate (AOTNa) surfactant molecules in the gas phase have been investigated by electrospray ionization mass spectrometry (ESI‐MS) and density functional theory calculations. Mainly driven by the interactions of alkali metal ions both with the oxygen atoms of the sulfonate group and with the succinate moiety of the AOT? anion, spatially ordered supramolecular assemblies, characterized by an internal core composed of surfactant counterions and hydrophilic head groups surrounded by the surfactant alkyl chains pointing outwards, are formed. Calculations have shown that surfactant self‐organization in the gas phase is energetically favoured, the energy of formation of negatively charged aggregates from isolated AOTNa and AOT? being linearly related to the aggregation number. Information on the chelating properties of AOTNa towards clusters of inorganic salts was achieved by infusion of solutions at various AOTNa/metal salt (NaCl, NaBr, NaI, LiI, KCl, CsI, RbI) ratios in the ESI source of a mass spectrometer. A wide variety of negatively charged AOT‐metal aggregates, some of them also incorporating halide (X?) ions, has been observed. Calculations have shown that the capture of a halide anion to give the AOTMX? species is favoured but the energetics of the process depends on the alkali metal and halide types. The use of energy‐resolved mass spectrometry has allowed us to evaluate the stability of different complexes and to evaluate the role played by the metal ion. Overall, the present investigation supports the idea that, in the gas phase, mainly driven by electrostatic interactions, surfactant molecules are present as molecular aggregates characterized by a reverse micelle‐like organization with an internal core formed by the surfactant counterions and head groups surrounded by the surfactant alkyl chains. These peculiar aggregates are able to incorporate ionic clusters in their hydrophilic core. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The acidity of protic cations and neutral molecules has been studied extensively in the gas phase, and the gas‐phase acidity has been established previously as a very useful measure of the intrinsic acidity of neutral and cationic compounds. However, no data for any anionic acids were available prior to this study. The protic anions [H(B12X12)]? (X=F, Cl, Br, I) are expected to be the most acidic anions known to date. Therefore, they were investigated in this study with respect to their ability to protonate neutral molecules in the gas phase by using a combination of mass spectrometry and quantum‐chemical calculations. For the first time it was shown that in the gas phase protic anions are also able to protonate neutral molecules and thus act as Brønsted acids. According to theoretical calculations, [H(B12I12)]? is the most acidic gas‐phase anion, whereas in actual protonation experiments [H(B12Cl12)]? is the most potent gas‐phase acidic anion for the protonation of neutral molecules. This discrepancy is explained by ion pairing and kinetic effects.  相似文献   

7.
Synthesis and ion‐pair complexation properties of novel ditopic bis‐urea receptors based on dibenzo[21]crown‐7 ( R1 ) and dibenzo[24]crown‐8 ( R2 ) scaffolds have been studied in the solid state, solution, and gas phase. In a 4:1 CDCl3/[D6]DMSO solution, both receptors clearly show positive heterotropic cooperativity toward halide anions when complexed with Rb+ or Cs+, with the halide affinity increasing in order I?<Br?<Cl?. In solution, the rubidium complexes of both receptors have higher halide affinities compared to the caesium complexes. However, Rb+ and Cs+ complexes of R2 show stronger affinities toward all the studied anions compared to the corresponding cationic complexes of R1 . Similar selectivity of the receptors toward the studied ion pairs was also observed also in the gas phase by competition experiments with mass spectrometry. A total of eight crystal structures with different rubidium and caesium halides and oxyanions were obtained in addition to the crystal structure of R2?BaCl2 . The selectivity observed in solution and in the gas phase is explainable by the conformational differences observed in the crystal structures of ion‐pair complexes with R1 and R2 . In the solid state, R1 has an open conformation due to the asymmetric crown‐ether scaffold, whereas R2 has a compact, folded conformation. Computational studies of the ion‐pair complexes of R2 show that the interaction energies of the complexes increase in the order CsI<CsBr<CsCl<RbCl, supporting the selectivity observed in solution and the gas‐phase.  相似文献   

8.
The formation of complexes between hexafluorophosphate (PF6) and tetraisobutyloctahydroxypyridine[4]arene has been thoroughly studied in the gas phase (ESI‐QTOF‐MS, IM‐MS, DFT calculations), in the solid state (X‐ray crystallography), and in chloroform solution (1H, 19F, and DOSY NMR spectroscopy). In all states of matter, simultaneous endo complexation of solvent molecules and exo complexation of a PF6 anion within a pyridine[4]arene dimer was observed. While similar ternary complexes are often observed in the solid state, this is a unique example of such behavior in the gas phase.  相似文献   

9.
1,3‐Bis(pentafluorophenyl‐imino)isoindoline (AF) and 3,6‐di‐tert‐butyl‐1,8‐bis(pentafluorophenyl)‐9H‐carbazole (BF) have been designed as preorganized anion receptors that exploit anion–π interactions, and their ability to bind chloride and bromide in various solvents has been evaluated. Both receptors AF and BF are neutral but provide a central NH hydrogen bond that directs the halide anion into a preorganized clamp of the two electron‐deficient appended arenes. Crystal structures of host–guest complexes of AF with DMSO, Cl?, or Br? (AF:DMSO, AF:Cl?, and ${{\rm A}{{{\rm F}\hfill \atop 2\hfill}}}$ :Br?) reveal that in all cases the guest is located in the cleft between the perfluorinated flaps, but NMR spectroscopy shows a more complex situation in solution because of E,Z/Z,Z isomerism of the host. In the case of the more rigid receptor BF, Job plots evidence 1:1 complex formation with Cl? and Br?, and association constants up to 960 M ?1 have been determined depending on the solvent. Crystal structures of BF and BF:DMSO visualize the distinct preorganization of the host for anion–π interactions. The reference compounds 1,3‐bis(2‐pyrimidylimino)isoindoline (AN) and 3,6‐di‐tert‐butyl‐1,8‐diphenyl‐9H‐carbazole (BH), which lack the perfluorinated flaps, do not show any indication of anion binding under the same conditions. A detailed computational analysis of the receptors AF and BF and their host–guest complexes with Cl? or Br? was carried out to quantify the interactions in play. Local correlation methods were applied, allowing for a decomposition of the ring–anion interactions. The latter were found to contribute significantly to the stabilization of these complexes (about half of the total energy). Compounds AF and BF represent rare examples of neutral receptors that are well preorganized for exploiting anion–π interactions, and rare examples of receptors for which the individual contributions to the binding energy have been quantified.  相似文献   

10.
Anion‐π catalysis functions by stabilizing anionic transition states on aromatic π surfaces, thus providing a new approach to molecular transformation. The delocalized nature of anion–π interactions suggests that they serve best in stabilizing long‐distance charge displacements. Aiming therefore for an anionic cascade reaction that is as charismatic as the steroid cyclization is for conventional cation‐π biocatalysis, reported here is the anion‐π‐catalyzed epoxide‐opening ether cyclizations of oligomers. Only on π‐acidic aromatic surfaces having a positive quadrupole moment, such as hexafluorobenzene to naphthalenediimides, do these polyether cascade cyclizations proceed with exceptionally high autocatalysis (rate enhancements kauto/kcat >104 m ?1). This distinctive characteristic adds complexity to reaction mechanisms (Goldilocks‐type substrate concentration dependence, entropy‐centered substrate destabilization) and opens intriguing perspectives for future developments.  相似文献   

11.
Electrospray ionization triple quadrupole mass spectrometry (ESI‐TSQ‐MS) and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI‐FTICR‐MS) were used to investigate the interesting gas‐phase reactions of the cationic iron (Fe) complexes of 2‐pyrimidinyloxy‐N‐arylbenzylamines (1–6), which are generated by ESI when mixing their methanolic solutions. Further studies of these Fe complexes by collision‐induced dissociation (CID) show that Fe(III) complexes undergo an interesting gas‐phase single electron transfer (SET) reaction to give 1?+–6?+,with loss of neutral FeCl2, whereas Fe(II) can catalyze gas‐phase Smiles rearrangement reactions of compounds 1–6. By using different Fe(II)X2 salts (X = Cl or Br) with a set of reactants, the role of the counterion (X?) and the structure effect of the reactants on Fe(II)‐catalyzed gas‐phase Smiles rearrangement reactions are studied. Evidence obtained from by TSQ‐MS and FTICR‐MS experiments, hydrogen/deuterium (H/D) exchange experiments and theoretical computations supported some unique gas‐phase chemistries initiated by introduction of Fe(II) into 1. Importantly, by comparing the distinct gas‐phase reaction results of the cationic Fe(III) complexes with those of Fe(II) complexes, the charge state effects of iron on the gas‐phase chemistries of Fe complexes are revealed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Isoguanine (2‐oxo‐6‐amino‐guanine), a natural but non‐standard base, exhibits unique self‐association properties compared to its isomer, guanine, and results in formation of different higher order DNA structures. In this work, the higher order structures formed by oligonucleotides containing guanine repeats or isoguanine repeats after annealing in solutions containing various cations are evaluated by electrospray ionization mass spectrometry (ESI‐MS) and circular dichroism (CD) spectroscopy. The guanine‐containing strand (G9) consistently formed quadruplexes upon annealing, whereas the isoguanine strand (Ig9) formed both pentaplexes and quadruplexes depending on the annealing cation. Quadruplex formation with G9 showed some dependence on the identity of the cation present during annealing with high relative quadruplex formation detected with six of ten cations. Analogous annealing experiments with Ig9 resulted in complex formation with all ten cations, and the majority of the resulting complexes were pentaplexes. CD results indicated most of the original complexes survived the desalting process necessary for ESI‐MS analysis. In addition, several complexes, especially the pentaplexes, were found to be capable of cation exchange with ammonium ions. Ab initio calculations were conducted for isoguanine tetrads and pentads coordinated with all ten cations to predict the most energetically stable structures of the complexes in the gas phase. The observed preference of forming quadruplexes versus pentaplexes as a function of the coordinated cation can be interpreted by the calculated reaction energies of both the tetrads and pentads in combination with the distortion energies of tetrads.  相似文献   

13.
Combined application of cyclic voltammetry (CV) and electrochemical quartz crystal microbalance (EQCM) technique reveals a complicated interplay between the adsorption of ammonium and lower molecular weight tetraalkyl ammonium cations and desorption of Cl? anions inside carbon micropores at low surface charge densities, which results in failure of their permselectivity. Higher negative surface charge densities induce complete exclusion (desorption) of the Cl? co‐ions, which imparts purely permselective behavior on the carbon micropores. The second fundamental effect discovered herein relates to the dominant role of anion desorption (as compared to cation adsorption), that is, overwhelming failure of permselectivity extends to high negative charge densities of the electrode in the presence of bulky tetraalkyl ammonium cations, which tend to be confined in the micropores of the carbon. The results obtained are important for advancement of high power density carbon‐based supercapacitors, nanofiltration technologies with porous carbon membranes, and studies of ionic transport across biological membranes.  相似文献   

14.
A new amide of monensin A with 4-aminobenzo-15-crown-5 (M-AM3) was synthesised and its ability to form complexes with Na+ cations was studied by ESIMS, 1H, 13C and 23Na NMR, FTIR and PM5 semi-empirical methods. ESI mass spectrometry indicates that in the gas phase M-AM3 amide forms complexes of 1:1 and 1:2 stoichiometry with Na+ cations. The formation of such complexes is also confirmed in the acetonitrile solution, in which the existence of equilibrium between two structures A and B is found, of which B structure is dominant. The structures of M-AM3 and its 1:1 and 1:2 complexes with Na+ cations are stabilised by various intramolecular hydrogen bonds, which are discussed in detail. The in vitro biological tests have demonstrated that the new M-AM3 amide shows good activity towards some strains of Gram-positive bacteria (MIC 25-50 μg/ml).  相似文献   

15.
Anion–π interactions between a π‐acidic aromatic system and an anion are gaining increasing recognition in chemistry and biology. Herein, the binding features of an electron‐deficient aromatic system (1,3,5‐trinitrobenzene (TNB)) and selected anions (OH?, Br?, and I?) are examined in the gas phase by using the combined information derived from collision‐induced dissociation experiments at variable energy, infrared multiple‐photon dissociation spectroscopy, and quantum chemical calculations. We provide spectroscopic evidence for two different structural motifs of anion–arene complexes depending on the nature of the anion. The TNB–OR? complexes (R=H, or alkyl groups which were studied earlier) adopt an anionic σ‐complex structure whereby RO? attacks the aromatic ring with covalent bond formation, and develops a tetrahedral ring carbon bound to H and OR. The halide complexes rather conform to a structure in which the TNB moiety is hardly altered, and the halogen is placed on an unsubstituted carbon atom over the periphery of the ring at a C–X distance that is appreciably longer than a typical covalent bond length. The ensuing structural motif, previously characterized in the solid state and named weak σ interaction, is now confirmed by an IR spectroscopic assay in the gas phase, in which the sampled species are unperturbed by crystal packing or solvation effects.  相似文献   

16.
The twisted lateral tetraalkyloxy ortho‐terphenyl units in dibenzo[18]crown‐6 ethers 1 a – f were readily converted into the flat tetraalkyloxytriphenylene systems 2 a – f by oxidative cyclization with FeCl3 in nitromethane. Reactions of the latter with potassium salts gave complexes KX ?2 , which displayed mesomorphic properties. The aromatization increased both the clearing and melting points; the mesophase stabilities, however, were mainly influenced by the respective anions upon complexation with various potassium salts. In contrast, the alkyl chain lengths played only a secondary role. Among the potassium complexes of triphenylene‐substituted crown ethers KX ?2 , only those with the soft anions I? and SCN? displayed mesophases with expanded phase temperature ranges of 93 °C and 132 °C (for KX ?2 e ), respectively, as compared to the corresponding o‐terphenyl‐substituted crown ether complexes KI ?1 e (ΔT=51 °C) and KSCN ?1 e (plastic crystal phase). Anions such as Br?, Cl?, and F? decreased the mesophase stability, and PF6? led to complete loss of the mesomorphic properties of KPF6 ?2 although not for KPF6 ?1 . For crown ether complexes KX ?2 (X=F, Cl, Br, I, BF4, and SCN), columnar rectangular mesophases of different symmetries (c2 mm, p2 mg, and p2 gg) were detected. In contrast to findings for the twisted o‐terphenyl crown ether complexes KX ?1 , the complexation of the flat triphenylene crown ethers 2 with KX resulted in the formation of organogels. Characterization of the organogel of KI ?2 e in CH2Cl2 revealed a network of fibers.  相似文献   

17.
Mixed cation (Li+, Na+ and K+) and anion (F?, Cl?, Br?) complexes of the aromatic π‐surfaces (top and bottom) are studied by using dispersion‐corrected density functional theory. The selectivity of the aromatic surface to interact with a cation or an anion can be tuned and even reversed by the electron‐donating/electron‐accepting nature of the side groups. The presence of a methyl group in the ? OCH3, ? SCH3, ? OC2H5 in the side groups of the aromatic ring leads to further cooperative stabilization of the otherwise unstable/weakly stable anion???π complexes by bending of the side groups towards the anion to facilitate C? H???anion interactions. The cooperativity among the interactions is found to be as large as 100 kcal mol?1 quantified by dissection of the three individual forces from the total interaction energy. The crystal structures of the fluoride binding tripodal and hexapodal ligands provide experimental evidence for such cooperative interactions.  相似文献   

18.
The development of novel Brønsted acids featuring the hexacoordinate phosphorus(V) anion [TRISPHAT]? {[ 1 ]?=[P(1,2‐O2C6Cl4)3]?} are reported. The title compound, H(OEt2)2[ 1 ], was synthesized from 1,2‐(HO)2C6Cl4 (3 equiv) and PCl5 in the presence of diethyl ether. This compound was fully characterized by 1H, 31P and 13C NMR spectroscopy, X‐ray crystallography and elemental microanalysis. Dissolution of H(OEt2)2[ 1 ] in acetonitrile results in the slow precipitation of crystalline H(OEt2)(NCMe)[ 1 ], which was characterized by X‐ray diffraction; however, in CD2Cl2 solution the [TRISPHAT]? anion protonated and ring‐opened. The weighable, solid H(OEt2)2 [ 1 ] was found to be a competent initiator for the polymerization of n‐butyl vinyl ether, α‐methylstyrene, styrene and isoprene at a variety of temperatures and monomer‐to‐initiator ratios. At low temperatures, polymers with Mn>105 were obtained for n‐butyl vinyl ether and α‐methylstyrene whereas slightly lower molecular weights were obtained with styrene and isoprene (104<Mn<105). The poly(α‐methylstyrene) synthesized at ?78 °C is syndiotactic‐rich (ca. 87 % rr) whereas the polystyrene obtained at ?50 °C is atactic. The polyisoprene obtained possessed all possible modes of enchainment as well as branched and/or cyclic structures that are often observed in polyisoprene.  相似文献   

19.
Pentacyanocyclopentadienide (PCCp?), a stable π‐electronic anion, provided various ion‐pairing assemblies in combination with various cations. PCCp?‐based assemblies exist as single crystals and mesophases owing to interionic interactions with π‐electronic and aliphatic cations with a variety of geometries, substituents, and electronic structures. Single‐crystal X‐ray analysis revealed that PCCp? formed cation‐dependent arrangements with contributions from charge‐by‐charge and charge‐segregated assembly modes for ion pairs with π‐electronic and aliphatic cations, respectively. Furthermore, some aliphatic cations gave dimension‐controlled organized structures with PCCp?, as observed in the mesophases, for which synchrotron XRD analysis suggested the formation of charge‐segregated modes. Noncontact evaluation of conductivity for (C12H25)3MeN+ ? PCCp? films revealed potential hole‐transporting properties, yielding a local‐scale hole mobility of 0.4 cm2 V?1 s?1 at semiconductor–insulator interfaces.  相似文献   

20.
Telechelic hydroxylated poly(3‐hydroxybutyrate) (PHB‐diol) oligomers have been successfully synthesized in 90–95% yield from high molar mass PHB by tin‐catalyzed alcoholysis with different diols (mainly 1,4‐butanediol) in diglyme. The PHB‐diol oligomers structure was studied by nuclear magnetic resonance, Fourier transformed infrared spectroscopy MALDI‐ToF MS, and size exclusion chromatography, whereas their crystalline structures, thermal properties and thermal stability were analyzed by wide angle X‐ray scattering, DSC, and thermogravimetric analyses. The kinetic of the alcoholysis was studied and the influence of (i) the catalyst amount, (ii) the diol amount, (iii) the reaction temperature, and (iv) the diol chain length on the molar mass was discussed. The influence of the PHB‐diol molar mass on the thermal stability, the thermal properties and optical properties was investigated. Then, tin‐catalyzed poly(ester‐ether‐urethane)s (PEEU) of Mn = 15,000–20,000 g/mol were synthesized in 1,2‐dichloroethane from PHB‐diol oligomers (Pester) with modified 4,4'‐MDI and different polyether‐diols (Pether) (PEG‐2000, PEG‐4000, and PPG‐PEG‐PPG). The influence of the PHB‐diol chain length, the Pether/Pester ratio, the polyether segment nature and the PEG chain length on the thermal properties and crystalline structures of PEEUs was particularly discussed. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1949–1961  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号