首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modulation thresholds were measured in three subjects for a sinusoidally amplitude-modulated (SAM) wideband noise (the signal) in the presence of a second amplitude-modulated wideband noise (the masker). In monaural conditions (Mm-Sm) masker and signal were presented to only one ear; in binaural conditions (M0-S pi) the masker was presented diotically while the phase of modulation of the SAM noise signal was inverted in one ear relative to the other. In experiment 1 masker modulation frequency (fm) was fixed at 16 Hz, and signal modulation frequency (fs) was varied from 2-512 Hz. For monaural presentation, masking generally decreased as fs diverged from fm, although there was a secondary increase in masking for very low signal modulation frequencies, as reported previously [Bacon and Grantham, J. Acoust. Soc. Am. 85, 2575-2580 (1989)]. The binaural masking patterns did not show this low-frequency upturn: binaural thresholds continued to improve as fs decreased from 16 to 2 Hz. Thus, comparing masked monaural and masked binaural thresholds, there was an average binaural advantage, or masking-level difference (MLD) of 9.4 dB at fs = 2 Hz and 5.3 dB at fs = 4 Hz. In addition, there were positive MLDs for the on-frequency condition (fm = fs = 16 Hz: average MLD = 4.4 dB) and for the highest signal frequency tested (fs = 512 Hz: average MLD = 7.3 dB). In experiment 2 the signal was a SAM noise (fs = 16 Hz), and the masker was a wideband noise, amplitude-modulated by a narrow band of noise centered at fs. There was no effect on monaural or binaural thresholds as masker modulator bandwidth was varied from 4 to 20 Hz (the average MLD remained constant at 8.0 dB), which suggests that the observed "tuning" for modulation may be based on temporal pattern discrimination and not on a critical-band-like filtering mechanism. In a final condition the masker modulator was a 10-Hz-wide band of noise centered at the 64-Hz signal modulation frequency. The average MLD in this case was 7.4 dB. The results are discussed in terms of various binaural capacities that probably play a role in binaural release from modulation masking, including detection of varying interaural intensity differences (IIDs) and discrimination of interaural correlation.  相似文献   

2.
Auditory filter shapes at low center frequencies   总被引:3,自引:0,他引:3  
Auditory-filter shapes were estimated in normally hearing subjects for signal frequencies (fs) of 100, 200, 400, and 800 Hz using the notched-noise method [R. D. Patterson and I. Nimmo-Smith, J. Acoust. Soc. Am. 67, 229-245 (1980)]. Two noise bands, each 0.4fs wide, were used; they were placed both symmetrically and asymmetrically about the signal frequency to allow the measurement of filter shape and asymmetry. Two overall noise levels were used: 77 and 87 dB SPL. In deriving the shapes of the auditory filters, account was taken of the nonflat frequency response of the Sennheiser HD424 earphone, and also of the frequency-dependent attenuation produced by the middle ear. The auditory filters were asymmetric; the upper skirt was steeper than the lower skirt. The asymmetry tended to be greater at the higher noise level. The equivalent rectangular bandwidths (ERBs) of the filters at the lower noise level had average values of 36, 47, 87, and 147 Hz for values of fs of 100, 200, 400, and 800 Hz, respectively. The standard deviations of the ERBs across subjects were typically about 10% of the ERB values. The signal-to-masker ratio at the output of the auditory filter required to achieve threshold increased markedly with decreasing fs.  相似文献   

3.
In experiment I, thresholds for 400-ms sinusoidal signals were measured in the presence of a continuous 25-Hz-wide noise centered at signal frequencies (fs) ranging from 250 to 8000 Hz in 1-oct steps. The masker was presented either alone or together with a second continuous 25-Hz-wide band of noise (the flanking band) whose envelope was either correlated with that of the on-frequency band or was uncorrelated; its center frequency ranged from 0.5 fs to 1.5 fs. The flanking band was presented either in the same ear (monotic condition) as the signal plus masker or in the opposite ear (dichotic condition). The on-frequency band and the flanking band each had an overall level of 67 dB SPL. The comodulation masking release, CMR (U-C), is defined as the difference between the thresholds for the uncorrelated and correlated conditions. The CMR (U-C) showed two components: a broadly tuned component, occurring at all signal frequencies and all flanking-band frequencies, and occurring for both monotic and dichotic conditions; and a component restricted to the monotic condition and to flanking-band frequencies close to fs. This sharply tuned component was small for low signal frequencies, increased markedly at 2000 and 4000 Hz, and decreased at 8000 Hz. Experiment II showed that the sharply tuned component of the CMR (U-C) was slightly reduced in magnitude when the level of the flanking band was 10 dB above that of the on-frequency band and was markedly reduced when the level was 10 dB below, whereas the broadly tuned component and the dichotic CMR (U-C) were only slightly affected. Experiment III showed that the sharply tuned component of the CMR (U-C) was markedly reduced when the bandwidths of the on-frequency and flanking bands were increased to 100 Hz, while the broadly tuned component and the dichotic CMR (U-C) decreased only slightly. The argument here is that the sharply tuned component of the monotic CMR (U-C) results from beating between the "carrier" frequencies of the two masker bands. This introduces periodic zeros in the masker envelope, which facilitate signal detection. The broadly tuned component, which is probably a "true" CMR, was only about 3 dB.  相似文献   

4.
We use femtosecond laser frequency combs to convert optical frequency references to the microwave domain, where we demonstrate the synthesis of 10-GHz signals having a fractional frequency instability of < or =3.5 x 10(-15) at a 1-s averaging time, limited by the optical reference. The residual instability and phase noise of the femtosecond-laser-based frequency synthesizers are 6.5 x 10(-16) at 1 s and -98 dBc/Hz at a 1-Hz offset from the 10-GHz carrier, respectively. The timing jitter of the microwave signals is 3.3 fs.  相似文献   

5.
低噪声微波在冷原子光钟、光子雷达、大科学装置远程同步等领域具有重要的应用价值.本文介绍了一种基于光学-微波相位探测技术的低噪声微波产生方案,利用光纤环路光学-微波鉴相器,将超稳激光的频率稳定度相干传递至介质振荡器.实验采用梳齿相位参考至超稳激光的窄线宽掺铒光纤飞秒光学频率梳,结合光纤环路光学-微波鉴相器和精密锁相装置,将7 GHz介质振荡器同步至光频梳重复频率的高次谐波,同步后的光脉冲序列与微波信号的剩余相位噪声为–100 d Bc/Hz@1 Hz,定时抖动为8.6 fs [1 Hz—1.5 MHz];通过搭建两套低噪声微波产生系统,测得7 GHz微波的剩余相位噪声为–90 d Bc/Hz@1 Hz,对应的频率稳定度为4.8×10–15@1 s.该研究结果对基于光学相干分频的低噪声微波产生提供了一种新思路.  相似文献   

6.
Holman KW  Hudson DD  Ye J  Jones DJ 《Optics letters》2005,30(10):1225-1227
Transfer of a high-stability and ultralow-jitter timing signal through a fiber network via a mode-locked fiber laser is demonstrated. With active cancellation of the fiber-transmission noise, the fractional instability for transfer of a radio-frequency signal through a 6.9- (4.5-) km round-trip installed (laboratory-based) fiber network is below 9(7) x 10(-15) tau(-1/2) for an averaging time tau > or = 1 s, limited by the noise floor of the frequency-counting system. The noise cancellation reduces the rms timing jitter, integrated over a bandwidth from 1 Hz to 100 kHz, to 37 (20) fs for the installed (laboratory-based) fiber network, representing what is to our knowledge the lowest reported jitter for transfer of a timing signal over kilometer-scale distances using an installed (laboratory-based) optical-fiber network.  相似文献   

7.
We observe that nanojoule femtosecond pulses that are spectrally broadened in a microstructured fiber acquire excess noise. The excess noise is manifested as an increase in the noise floor of the rf spectrum of the photocurrent from a photodetector illuminated by the pulse train from the laser oscillator. Measurements are made of the intensity dependence of the excess noise for both 100 fs and sub-10 fs pulses. The excess noise is very strong for 100 fs pulses, but barely measurable for sub-10 fs pulses. A rigorous quantum treatment of the nonlinear propagation of ultrashort pulses predicts that, for a fixed generated bandwidth, the amount of excess noise decreases with pulse duration, in agreement with the experimental results.  相似文献   

8.
Kim J  Chen J  Cox J  Kärtner FX 《Optics letters》2007,32(24):3519-3521
Timing jitter characterization of optical pulse trains from free-running mode-locked lasers with attosecond resolution is demonstrated using balanced optical cross correlation in the timing detector and the timing delay configurations. In the timing detector configuration, the balanced cross correlation between two mode-locked lasers synchronized by a low-bandwidth phase-locked loop is used to measure the timing jitter spectral density outside the locking bandwidth. In addition, the timing delay configuration using a 325 m long timing-stabilized fiber link enables the characterization of timing jitter faster than the delay time. The limitation set by shot noise in this configuration is 2.2 x 10(-8) fs(2)/Hz corresponding to 470 as in 10 MHz bandwidth.  相似文献   

9.
Quinlan F  Gee S  Ozharar S  Delfyett PJ 《Optics letters》2006,31(19):2870-2872
We report a semiconductor-based, low-noise, 10.24 GHz actively mode-locked laser with 4.65 fs of relative timing jitter and a 0.0365% amplitude fluctuation (1 Hz to 100 MHz) of the optical pulse train. The keys to obtaining this result were the laser's high optical power and the low phase noise of the rf source used to mode lock the laser. The low phase noise of the rf source not only improves the absolute and relative timing jitter of the laser, but also prevents coupling of the rf source phase noise to the pulse amplitude fluctuations by the mode-locked laser.  相似文献   

10.
江阳  于晋龙  胡浩  王文睿  杨恩泽 《光学学报》2007,27(8):1397-1400
采用双波长注入一包含伪随机码发生器与相位调制器的光电振荡器可以同时得到非归零(NRZ)码,归零(RZ)码以及光,电时钟信号输出。该方案使用了光域耦合的双环路结构,在不增加有源器件的条件下实现边模抑制。相位调制器用于反馈调制并同时实现占空比可调的非归零码到归零码的转换。双波长的注入排除了编码信号在振荡器中引入的非时钟频率成分。实验给出了10 Gb/s工作速率下的结果,得到了抖动为637 fs的光信号输出。转换得到的归零码信号占空比约为33%。输出电时钟信号的相位噪声在频偏10 kHz处为-109 dBc/Hz,边模抑制比为58 dB。  相似文献   

11.
Using high-bandwidth feedback, we have synchronized the pulse train from a mode-locked semiconductor laser to an external optical atomic clock signal and achieved what is to our knowledge the lowest timing jitter to date (22 fs, integrated from 1 Hz to 100 MHz) for such devices. The performance is limited by the intrinsic noise of the phase detector used for timing-jitter measurement. We expect such a highly stable device to play an important role in fiber-network-based precise time/frequency distribution.  相似文献   

12.
报道了在10 Hz飞秒再生放大超快激光系统中,运用可编程声光色散滤波器(AOPDF)对注入再生放大的种子光进行频谱整形和色散预补偿,使钛宝石激光系统输出光脉冲谱线半峰全宽由原来的38 nm展宽到66 nm,压缩后输出脉冲宽度从35 fs减小到20 fs。实验结果表明,利用可编程声光色散滤波器能够同时独立进行光谱整形和大范围内色散补偿的特性,可以有效抑制啁啾脉冲放大过程中存在的谱线增益窄化效应,补偿钛宝石激光系统中存在的残留色散。这为进一步研制小于20 fs,10 TW量级钛宝石激光系统奠定了基础。  相似文献   

13.
建立了一台动态范围大于10^7的三阶相关装置,利用它对习飞秒放大激光脉冲的背景强度的时间分布进行了测量。测量结果显示,在激光主脉冲的前后,分别存在有强度为主脉冲强度的10^-5倍的本底噪声。  相似文献   

14.
The threshold for a signal masked by a narrow band of noise centered at the signal frequency (the on-frequency band) may be reduced by adding to the masker a second band of noise (the flanking band) whose envelope is correlated with that of the first band. This effect is called comodulation masking release (CMR). These experiments examine two questions. (1) How does the CMR vary with the number and ear of presentation of the flanking band(s)? (2) Is it possible to obtain a CMR when a binaural masking level difference (BMLD) is already present, and vice versa? Thresholds were measured for a 400-ms signal in a continuous 25-Hz-wide noise centered at signal frequencies (fs) of 250, 1000, and 4000 Hz. This masker was presented either alone or with one or more continuous flanking bands whose envelopes were either correlated or uncorrelated with that of the on-frequency band; their frequencies ranged from 0.5fs to 1.5fs. CMRs were measured for six conditions in which the signal, the on-frequency band, and the flanking band(s) were presented in various monaural and binaural combinations. When a single flanking band was used, the CMR was typically around 2-3 dB. The CMR increased to 5-6 dB if an additional flanking band was added. The effect of the additional band was similar whether it was in the same ear as the original band or in the opposite ear. At the lowest signal frequency, a large CMR was observed in addition to a BMLD and vice versa. At the highest signal frequency, the extra release from masking was small. The results are interpreted in terms of the cues producing the CMR and the BMLD.  相似文献   

15.
Gee S  Quinlan F  Ozharar S  Delfyett PJ 《Optics letters》2005,30(20):2742-2744
We report the generation of optical pulse trains with 8.5 fs timing jitter (10 Hz to 10 MHz) from a mode-locked semiconductor laser, with a slab coupled optical waveguide amplifier used as the gain element. This is, to our knowledge, the lowest residual timing jitter reported to date from an actively mode-locked laser.  相似文献   

16.
贾石  于晋龙  王菊  王子雄  陈斌 《物理学报》2015,64(18):184201-184201
提出了一种新型的基于光电振荡器的重复频率可调谐的超低抖动光窄脉冲源. 光电振荡器系统可以产生超低相位噪声的微波信号; 被该信号调制的直调光经过两次相位调制之后, 使光脉冲的啁啾增强; 再通过一段色散补偿光纤, 光脉冲被进一步压窄. 实验中使用YIG可调滤波器, 可以得到8–12 GHz内步进为200 MHz的可调谐微波信号, 因此光脉冲的重复频率具有可调谐性. 当微波信号即脉冲重复频率为9.6 GHz时, 测得脉冲宽度为3.7 ps, 相位噪声为-130.1 dBc/Hz@10 kHz. 由此得出光脉冲的瞬时抖动为60.1 fs (100 Hz–1 MHz), 因此该方案产生的光窄脉冲源具有超低的抖动.  相似文献   

17.
A fundamentally mode-locked soliton Er-fiber laser generating 167 fs pulses at 194 MHz via polarization additive-pulse mode locking is demonstrated. This simple, compact, and high repetition rate source exhibits a low timing jitter of 18 fs [1 kHz, 10 MHz] and the lowest relative intensity noise of less than 0.003% [1 kHz, 10 MHz] observed from an Er-fiber laser.  相似文献   

18.
Phase noise is a critical issue for the sensitivity of the interferometric gravitational-wave detector Laser Interferometer Space Antenna that requires laser sources with 1 W of output power. A low-power seed laser with a subsequent fiber amplifier is in discussion, and we report on spectrally resolved phase-noise measurements of an ytterbium-doped fiber amplifier emitting 1 W of output power from 10 mW of seed power. Phase-noise measurements for Fourier frequencies from 10(-4) Hz to 100 kHz show 60 rad/Hz0.5 at 10(-4) Hz and 0.2 mrad/Hz0.5 at 1 kHz. This measured excess phase noise is orders of magnitude below the free-running phase noise of nonplanar ring oscillators.  相似文献   

19.
Cranch GA 《Optics letters》2002,27(13):1114-1116
A novel technique for suppressing frequency noise in an erbium-doped fiber distributed-feedback laser incorporated into a master-oscillator-power-amplifier configuration by an electronic feedback technique is presented. The frequency noise is suppressed by locking of the laser emission to a fiber interferometer. The frequency noise spectral density of the laser is reduced by as much as 20 dB over the frequency range 1 Hz-10 kHz to 1.5 Hz/Hz(1/2) +/-25% at 1 kHz with a relative intensity noise spectral density below -120 dB/Hz over the frequency range 10 Hz-1 kHz. These lasers will have applications as sources for fiber-optic interferometry, high-resolution spectroscopy, and high-bandwidth communications.  相似文献   

20.
Hudson DD  Foreman SM  Cundiff ST  Ye J 《Optics letters》2006,31(13):1951-1953
Two mode-locked femtosecond fiber lasers, connected via a 7 km fiber link, are synchronized to an rms timing jitter of 19 fs, observed over the entire Nyquist bandwidth (half of the 93 MHz repetition frequency). This result is achieved in two steps. First, active cancellation of the fiber-transmission noise reduces timing jitter caused by path length fluctuations to a record level of 16 fs. Second, using a wide bandwidth interactivity actuator, the slave laser is synchronized to the incoming stable pulse train from the reference laser to within 10 fs. These results are confirmed by an optical cross-correlation measurement performed independently of the feedback loop operated in the microwave domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号