首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reversible protonation of the bis-ethylene complex, Co(C5Me4Et)(C2H4)2 yields [Co(C5Me4Et)(C2H4)2H][BF4], which readily exchanges its hydridic and olefinic protons stereospecifically at low temperatures; subsequent protonation at room temperature yields cobalt(III) complexes, C2H4 and C2H6.  相似文献   

2.
The beryllocenes [Be(C(5)Me(4)H)(2)] (1), [Be(C(5)Me(5))(2)] (2), and [Be(C(5)Me(5))(C(5)Me(4)H)] (3) have been prepared from BeCl(2) and the appropriate KCp' reagent in toluene/diethyl ether solvent mixtures. The synthesis of 1 is facile (20 degrees C, overnight), but generation of decamethylberyllocene 2 demands high temperatures (ca. 115 degrees C) and extended reaction times (3-4 days). The mixed-ring beryllocene 3 is obtained when the known [(eta(5)-C(5)Me(5))BeCl] is allowed to react with K[C(5)Me(4)H], once more under somewhat forcing conditions (115 degrees C, 36 h). The structures of the three metallocenes have been determined by low-temperature X-ray studies. Both 1 and 3 present eta5/eta1 geometries of the slip-sandwich type, whereas 2 exhibits an almost regular, ferrocene-like, sandwich structure. In the mixed-ring compound 3, C(5)Me(5) is centrally bound to beryllium and the eta(1)-C(5)Me(4)H ring bonds to the metal through the unique CH carbon atom. This is also the binding mode of the eta(1)-ring of 1. To analyze the nature of the bonding in these molecules, theoretical calculations at different levels of theory have been performed on compounds 2 and 3, and a comparison with the bonding in [Be(C(5)H(5))(2)] has been made. As for the latter molecule, energy differences between the eta5/eta5 and the eta5/eta1 structures of 2 are very small, being of the order of a few kcal mol(-1). Constrained space orbital variations (CSOV) calculations show that the covalent character in the bonding is larger for [Be(C(5)Me(5))(2)] than for [Be(C(5)H(5))(2)] due to larger charge delocalization and to increased polarizability of the C(5)Me(5) fragment.  相似文献   

3.
4.
The structural and magnetic properties of dinuclear [Co(II)(NCMe)(5)Co(II)(NCS)(4)]·MeCN have been investigated. The structure consists of an octahedral Co(II)(NCMe)(5) center connected to a tetrahedral Co(II)(NCS)(4) center bridged by a μ(1,3)-NCS(-) ligand. The bridging NCS(-) weakly couples the pair of S = (3)/(2) Co(II) spin sites, as evidenced by the magnetic data being best fit by the Curie-Weiss expression with θ = -15.5 K.  相似文献   

5.
The title octahedral complexes, [bis(pyridine‐2‐carbonyl)­amin­ate]­di­chloro­(methanol)­iron(III), [Fe(C12H8N3O2)­Cl2‐(CH4O)], and [bis­(pyri­dine‐2‐carbonyl)­amin­ate]­di­chloro‐(ethanol)­iron(III), [Fe­(C12H8N3O2)Cl2(C2H6O)], both crystallize in space group and have similar structures. Mono­anionic bpca? [bis(pyridine‐2‐carbonyl)­amin­ate] acts as a planar tridentate ligand in both cases. Coordination bond distances are in the range typical of high‐spin FeIII complexes. Carbon–oxygen distances are typical of a C=O double bond suggesting the negative charge of the bpca? ligand is localized on the central N atom.  相似文献   

6.
The coordination chemistry of 2,2'-dipyridyl diselenide (PySeSePy) (2) (C(10)H(8)N(2)Se(2)) has been investigated and its crystal structure has been determined (monoclinic, P2(1)/c, a = 10.129(2) ?, b = 5.7332(12) ?, c = 19.173(3) ?, beta = 101.493(8) degrees, Z = 4). In metal complexes the ligand was found to coordinate in three different modes, as also confirmed by X-ray structure determination. N,N'-coordination was found in the zinc complex [Zn(PySeSePy)Cl(2)] (3) (C(10)H(8)Cl(2)N(2)Se(2)Zn, triclinic, P&onemacr;, a = 7.9430(10) ?, b = 8.147(2) ?, c = 11.999(2) ?, alpha = 93.685(10) degrees, beta = 107.763(10) degrees, gamma = 115.440(10) degrees, Z = 2) and Se,Se'-coordination in the adduct of the ligand with bis(pentafluorophenyl)mercury(II) [PySeSePyHg(C(6)F(5))(2)] (5) (C(10)H(8)F(10)HgN(2)Se(2), monoclinic, P2(1)/n, a = 7.7325(10) ?, b = 5.9974(14) ?, c = 25.573, beta = 98.037(10) degrees, Z = 2), which however displays only weak interactions between selenium and mercury. The reaction of the ligand with norbornadiene carbonyl complexes of molybdenum and tungsten leads to reductive cleavage of the selenium-selenium bond with oxidation of the metal center and concomitant addition of the resulting selenolate to the metal carbonyl fragment. Thus the 7-coordinate complexes [Mo(SePy)(2)(CO)(3)] (6) (C(13)H(8)MoN(2)O(3)Se(2), monoclinic, P2(1)/n, a = 9.319(3) ?, b = 12.886(5) ?, c = 13.231(6) ?, beta = 109.23(3) degrees, Z = 4) and [W(SePy)(2)(CO)(3)] (7) (C(13)H(8)N(2)O(3)Se(2)W, monoclinic, P2(1)/n, a = 9.303(2) ?, b = 12.853(2) ?, c = 13.232(2) ?, beta = 109.270(10) degrees, Z = 4) were obtained. The same N,Se-coordination pattern emerges from the reaction of [Fe(2)(CO)(9)] with (2) leading to [Fe(SePy)(2)(CO)(2)] (8) (C(12)H(8)FeN(2)O(2)Se(2), monoclinic, P&onemacr;, a = 8.6691(14) ?, b = 12.443(2) ?, c = 14.085(2) ?, alpha = 105.811(10) degrees, beta = 107.533(8) degrees, gamma = 92.075(10) degrees, Z = 4).  相似文献   

7.
8.
Reaction of the 17-electron radical (*)Cr(CO)(3)Cp* (Cp* = C(5)Me(5)) with 0.5 equiv of 2-aminophenyl disulfide [(o-H(2)NC(6)H(4))(2)S(2)] results in rapid oxidative addition to form the initial product (o-H(2)N)C(6)H(4)S-Cr(CO)(3)Cp*. Addition of a second equivalent of (*)Cr(CO)(3)Cp* to this solution results in the formation of H-Cr(CO)(3)Cp* as well as (1)/(2)[[eta(2)-o-(mu-NH)C(6)H(4)S]CrCp*](2). Spectroscopic data show that (o-H(2)N)C(6)H(4)S-Cr(CO)(3)Cp* loses CO to form [eta(2)-(o-H(2)N)C(6)H(4)S]Cr(CO)(2)Cp*. Attack on the N-H bond of the coordinated amine by (*)Cr(CO)(3)Cp* provides a reasonable mechanism consistent with the observation that both chelate formation and oxidative addition of the N-H bond are faster under argon than under CO atmosphere. The N-H bonds of uncoordinated aniline do not react with (*)Cr(CO)(3)Cp*. Reaction of the 2 mol of (*)Cr(CO)(3)Cp* with 1,2-benzene dithiol [1,2-C(6)H(4)(SH)(2)] yields the initial product (o-HS)C(6)H(4)S-Cr(CO)(3)Cp and 1 mol of H-Cr(CO)(3)Cp*. Addition of 1 equiv more of (*)Cr(CO)(3)Cp to this solution also results in the formation of 1 equiv of H-Cr(CO)(3)Cp*, as well as the dimeric product (1)/(2)[[eta(2)-o-(mu-S)C(6)H(4)S]CrCp*](2). This reaction also occurs more rapidly under Ar than under CO, consistent with intramolecular coordination of the second thiol group prior to oxidative addition. The crystal structures of [[eta(2)-o-(mu-NH)C(6)H(4)S]CrCp*](2) and [[eta(2)-o-(mu-S)C(6)H(4)S]CrCp*](2) are reported.  相似文献   

9.
本文用电化学方法和X射线单晶结构分析, 研究了混合簇合物(C5H5FeC5H4C2Ph)Co2(CO)6的结构, 由循环伏安结果, 分别讨论了簇合物中(C5H5FeC5H4和C2O2中心的成键性质, X射线单晶结构分析表明: 晶体属单斜晶系, 空间群为P21, 晶胞参数a=11.845(6), b=8.155(6), c=24.031(6)A, β=90.88°,晶胞中分子数Z=4, 密度Do=1.637g.cm^-^2, 分析了(C5H5FeC5H4C2Ph)Co2(CO)6的结构特点, 并从成键角度讨论了(RC2R^1)Co(CO)6类簇合物的结构随RC2R^1不同而变化的规律。  相似文献   

10.
11.
Synthesis of Bridged Binuclear Titanocene Compounds – Crystal Structure of Cl2Ti[(C5H4)(C5H4)(Me)Si–Si(Me)(C5H4)(C5H4)]TiCl2 · PhMe Starting from Cp2(Me)Si–Si(Me)Cp2 1 the complexes X2Ti[(C5H4)(C5H4)(Me)Si–Si(Me)(C5H4)(C5H4)]TiX2 (X = Cl ( 2 a ); X = Me ( 3 )) were synthesized. The compounds were characterized by means of their 1H‐ and 13C‐n.m.r. and MS‐spectra. The crystal structure of 2 a · PhMe was determined.  相似文献   

12.
13.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XVII [1] [Co(g5‐Me5C5)(g3tBu2PPCH–CH3)] from [Co(g5‐Me5C5)(g2‐C2H4)2] and tBu2P–P=P(Me)tBu2 [Co(η5‐Me5C5)(η3tBu2PPCH–CH3)] 1 is formed in the reaction of [Co(η5‐Me5C5)(η2‐C2H4)2] 2 with tBu2P–P 4 (generated from tBu2P–P=P(Me)tBu2 3 ) by elimination of one C2H4 ligand and coupling of the phosphinophosphinidene with the second one. The structure of 1 is proven by 31P, 13C, 1H NMR spectra and the X‐ray structure analysis. Within the ligand tBu2P1P2C1H–CH3 in 1 , the angle P1–P2–C1 amounts to 90°. The Co, P1, P2, C1 atoms in 1 look like a „butterfly”︁. The reaction of 2 with a mixture of tBu2P–P=P(Me)tBu2 3 and tBu–C?P 5 yields [Co(η5‐Me5C5){η4‐(tBuCP)2}] 6 and 1 . While 6 is spontaneously formed, 1 appears only after complete consumption of 5 .  相似文献   

14.
15.
The title complexes, catena‐poly[[aqua(1,10‐phenanthroline‐κ2N,N′)­cobalt(II)]‐μ‐benzene‐1,4‐di­carboxyl­ato‐κ2O1:O4], [Co(C8H4O4)(C12H8N2)(H2O)], (I), and catena‐poly[[[(di‐2‐pyridyl‐κN‐amine)copper(II)]‐μ‐benzene‐1,4‐di­carboxyl­ato‐κ4O1,O1′:O4,O4′] hydrate], [Cu(C8H4O4)(C10H9N3)]·H2O, (II), take the form of zigzag chains, with the 1,4‐benzene­di­carboxyl­ate ion acting as an amphimonodentate ligand in (I) and a bis‐bidentate ligand in (II). The CoII ion in (I) is five‐coordinate and has a distorted trigonal–bipyramidal geometry. The CuII ion in (II) is in a very distorted octahedral 4+2 environment, with the octahedron elongated along the trans O—Cu—O bonds and with a trans O—Cu—O angle of only 137.22 (8)°.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号