首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Azophenine (7,8-diphenyl-2,5-bis(phenylamino)-p-quinonediimine, L(p)) reacts with [Cu(PPh3)4](BF4) or [Re(CO)(5)Cl] to yield the (Ph3P)(2)Cu(+) or [(OC)(3)ClRe] complex of the tautomeric form 7,8-diphenyl-4,5-bis(phenylamino)-o-quinonediimine, L(o), as evident from structure determinations and from very intense metal-to-ligand charge transfer (MLCT) transitions in the visible region. Time-dependent DFT (TD-DFT) calculations on model complexes [(N intersection N)Re(CO)(3)Cl] confirm the spectroscopic results, showing considerably higher oscillator strengths of the MLCT transition for the o-quinonediimine complexes in comparison to compounds with N intersection N=1,4-dialkyl-1,4-diazabutadiene. The complexes are additionally stabilized through hydrogen bonding between two now ortho-positioned NHPh substituents and one fluoride of the BF(4) (-) anion (Cu complex) or the chloride ligand (Re complex). DFT Calculations on the model ligands p-quinonediimine or 2,5-diamino-p-quinonediimine and their ortho-quinonoid forms with and without Li(+) or Cu(+) are presented to discuss the relevance for metal-dependent quinoproteins.  相似文献   

2.
A series of compounds has been made containing quadruply bonded Re2(hpp)4X2 species (hpp = the anion of 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2a]pyrimidine), where X is CF3SO3 (1), CF3CO2 (2), and F (3). The distances of 2.1562(7), 2.1711(5), and 2.1959(4) A for 1-3 show significant effects of the sigma and pi electron donating ability of the axial ligands on the metal-metal distance. With the weakly coordinating triflate ligand the Re-Re distance is the shortest for any quadruple bonded species known. In addition to examining the effects of axial ligands on the Re2(hpp)42+ core, our study of the Re2(hpp)43+ core is being extended beyond the preliminary results previously reported in only one compound [Re2(hpp)4Cl2]PF6 (Dalton Trans. 2003, 1218). We now report the structural characterization by both X-ray and neutron diffraction of the compound [Re2(hpp)4F](TFPB)2, 4 (TFPB = the anion tetrakis[3,5-bis(trifluoromethyl)phenyl]borate), and a detailed study by EPR spectroscopy of [Re2(hpp)4Cl2]PF6 at 9.5, 34.5, and 95 GHz frequencies, using dilute fluid solutions, frozen glass, and neat powder, show that the unpaired electron in the [Re2(hpp)4Cl2]+ ion is in an MO of predominant metal character with little mixing from the guanidinate ligands.  相似文献   

3.
The hydroxo compounds [Re(OH)(CO)(3)(N-N)] (N-N=bipy, 2 a; Me(2)-bipy, 2 b) were prepared in a biphasic H(2)O/CH(2)Cl(2) medium by reaction of [Re(OTf)(CO)(3)(N-N)] with KOH. In contrast, when anhydrous CH(2)Cl(2) was used, the binuclear hydroxo-bridged compound [[Re(CO)(3)(bipy)](2)(mu-OH)]OTf (3-OTf) was obtained. Compound [Re(OH)(CO)(3)(Me(2)-bipy)] (2 b) reacted with phenyl acetate or vinyl acetate to afford [Re(OAc)(CO)(3)(Me(2)-bipy)] (4) and phenol or acetaldehyde, respectively. The reactions of [Mo(OH)(eta(3)-C(3)H(4)-Me-2)(CO)(2)(phen)] (1), 2 a, and 2 b toward several unsaturated organic electrophiles were studied. The reaction of 1 with (p-tolyl)isocyanate afforded an adduct of N,N'-di(p-tolyl)urea and the carbonato-bridged compound [[Mo(eta(3)-C(3)H(4)-Me-2)(CO)(2)(phen)](2)(mu-eta(1)(O),eta(1)(O)-CO(3))] (5). In contrast, the reaction of 2 a with phenylisocyanate afforded [Re(OC(O)NHPh)(CO)(3)(bipy)] (6); this results from formal PhNCO insertion into the O-H bond. On the other hand, compounds [Mo[SC(O)NH(p-tolyl)](eta(3)-C(3)H(4)-Me-2)(CO)(2)(phen)] (7), [Re[SC(O)NH(p-tolyl)](CO)(3)(Me(2)-bipy)] (8 a), and [Re[SC(O)NHEt](CO)(3)(Me(2)-bipy)] (8 b) were obtained by reaction of 1 or 2 b with the corresponding alkyl or aryl isothiocyanates. In those cases, RNCS was inserted into the M-O bond. The reactions of 1, 2 a, and 2 b with dimethylacetylenedicarboxylate (DMAD) gave the complexes [Mo[C(OH)-C(CO(2)Me)C(CO(2)Me)-O](eta(3)-C(3)H(4)-Me-2)(CO)(phen)] (9) and [Re[C(OH)C(CO(2)Me)C(CO(2)Me)O](CO)(2)(N-N)] (N-N=bipy, 10 a; Me(2)-bipy, 10 b). The molecules of these compounds contain five-membered metallacycles that are the result of coupling between the hydroxo ligand, DMAD, and one of the CO ligands. The new compounds were characterized by a combination of IR and NMR spectroscopy, and for [[Re(CO)(3)(bipy)(2)(mu-OH)]BF(4) (3-BF(4)), 4, 5, 6, 7, 8 b, 9, and 10 b, also by means of single-crystal X-ray diffraction.  相似文献   

4.
The reaction of [PPN](2)[Re(6)C(CO)(19)] with Mo(CO)(6) and Ru(3)(CO)(12) under sunlamp irradiation provided the new mixed-metal clusters [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)] and [PPN](2)[Re(6)C(CO)(18)Ru(CO)(3)], which were isolated in yields of 85% and 61%, respectively. The compound [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)] crystallizes in the monoclinic space group P2(1)/c with a = 20.190 (7) ?, b = 16.489 (7) ?, c = 27.778 (7) ?, beta = 101.48 (2) degrees, and Z = 4 (at T = -75 degrees C). The cluster anion is composed of a Re(6)C octahedral core with a face capped by a Mo(CO)(4) fragment. There are three terminal carbonyl ligands coordinated to each rhenium atom. The four carbonyl ligands on the molybdenum center are essentially terminal, with one pair of carbonyl ligands (C72-O72 and C74-O74) subtending a relatively large angle at molybdenum (C72-Mo-C74 = 147.2(9) degrees ), whereas the remaining pair of carbonyl ligands (C71-O71 and C73-O73) subtend a much smaller angle (C71-Mo-C73 = 100.5(9) degrees ). The (13)C NMR spectrum of (13)CO-enriched [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)] shows signals for four sets of carbonyl ligands at -40 degrees C, consistent with the solid state structure, but the carbonyl ligands undergo complete scrambling at ambient temperature. The (13)C NMR spectrum of (13)CO-enriched [PPN](2)[Re(6)C(CO)(18)Ru(CO)(3)] at 20 degrees C is consistent with the expected structure of an octahedral Re(6)C(CO)(18) core capped by a Ru(CO)(3) fragment. The visible spectrum of [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)] shows a broad, strong band at 670 nm (epsilon = 8100), whereas all of the absorptions of [PPN](2)[Re(6)C(CO)(18)Ru(CO)(3)] are at higher energy. An irreversible oxidation wave with E(p) at 0.34 V is observed for [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)], whereas two quasi-reversible oxidation waves with E(1/2) values of 0.21 and 0.61 V (vs Ag/AgCl) are observed for [PPN](2)[Re(6)C(CO)(18)Ru(CO)(3)]. The molybdenum cap in [Re(6)C(CO)(18)Mo(CO(4))](2-) is cleaved by heating in donor solvents, and by treatment with H(2), to give largely [H(2)Re(6)C(CO)(18)](2-). In contrast, [Re(6)C(CO)(18)Ru(CO)(3)](2-) shows no tendency to react under similar conditions.  相似文献   

5.
Systematic synthesis routes have been developed for the linear-shaped rhenium(I) oligomers and polymers bridged with bidentate phosphorus ligands, [Re(N--N)(CO)3-PP-{Re(N--N)(CO)2-PP-}(n)Re(N--N)(CO)3](PF6)(n+2) (N--N = diimine, PP = bidentate phosphine, n = 0-18). These were isolated by size exclusion chromatography (SEC) and identified by (1)H NMR, IR, electrospray ionization Fourier transform mass spectrometry, analytical SEC, and elemental analysis. Crystal structures of [Re(bpy)(CO)3-Ph2PC[triple bond]CPPh2-Re(bpy)(CO)3](PF6)2, [Re(bpy)(CO)3-Ph2PC[triple bond]CPPh2-Re(bpy)(CO)2-Ph2PC[triple bond]CPPh2-Re(bpy)(CO)3](PF6)3 and [Re(bpy)(CO)3-Ph2PC2H4PPh2-{Re(bpy)(CO)2Ph2PC2H4PPh2-}(n)Re(bpy)(CO)3](PF6)(n+2) (bpy = 2,2'-bipyridine, n = 1, 2) were obtained, showing that they have interligand pi-pi interaction between the bpy ligand and the phenyl groups on the phosphorus ligand. All of the oligomers and polymers synthesized were emissive at room temperature in solution. For the dimers, broad emission was observed with a maximum at 523-545 nm, from the (3)MLCT excited-state of the tricarbonyl complex unit, [Re(N--N)(CO)3-PP-]. Emission from the longer oligomers and polymers with > or = 3 Re(I) units was observed at wavelengths 50-60 nm longer than those of the corresponding dimers. This fact and the emission decay results clearly show that energy transfer from the edge unit to the interior unit occurs with a rate constant of (0.9 x 10(8))-(2.5 x 10(8)) s(-1). The efficient energy transfer and the smaller exclusive volume of the longer Re(I) polymers indicated intermolecular aggregation for these polymers in an MeCN solution.  相似文献   

6.
We show here that the new complex fac-[Re(CO)3(dmso-O)3](CF3SO3) (1), efficiently prepared in one step from [ReBr(CO)5] and featuring a broad range of solubility, is, in general, a better precursor for the one-step synthesis of mono- and polynuclear inorganic compounds containing fac-[Re(CO)3]+ fragments compared to the commonly used (NEt4)2fac-[ReBr3(CO)3] and fac-[Re(CO)3(CH3CN)3](Y) (Y = PF6, BF4, ClO4) species. Compound 1 is the first example of a Re(I)-dmso complex structurally characterized and confirms the rule that dmso is always O-bonded when trans to CO. The reactivity of 1 was tested in the one-step preparation of several new and known complexes. The O-bonded sulfoxides of 1 are replaced under mild conditions by tri- (L3) and bidentate ligands (L2) to produce fac-[Re(CO)3(L3)]+ and fac-[Re(CO)3(L2)(dmso-O)]+ compounds, respectively. An excess of monodentate ligands (L) and more forcing conditions are needed to prepare fac-[Re(CO)3(L)3]+ compounds. The new compounds include fac-[Re(CO)3(bipy)(dmso-O)](CF3SO3) (4), that turned out to be an excellent precursor for binding the luminescent fac-[Re(CO)3(bipy)]+ fragment to polytopic ligands for the construction of more elaborate assemblies. One example reported here is the two-step preparation of fac-[{Re(CO)3(bipy)}(mu-4,4'-bipy){Ru(TPP)(CO)}](CF3SO3) (8) (TPP = tetraphenylporphyrin). The X-ray structures of the new compounds 1, 4, of the bis-porphyrin complex fac-[Re(CO)3Cl(4'MPyP)2] (13) (4'MPyP = 5-(4'pyridyl)-10,15,20-triphenylporphyrin), and of the rhenium-cyclophane [{(CO)3Re(mu-OH)2Re(CO)3}2(micro-4,4'-bipy)2] (15), among others, are described. Compound 1 might find useful applications in supramolecular chemistry (metal-mediated assembly of large architectures), in the in situ preparation of stable Re compounds to be used in nuclear medicine, and for the labeling of biomolecules.  相似文献   

7.
The first Re(I)-dipyrrinato complexes are reported. Complexes with the general formulas fac-[ReL(CO)(3)Cl](-), fac-[ReL(CO)(3)PR(3)], and [ReL(CO)(2)(PR(3))(PR'(3))] have been prepared, where L is one of a series of meso-aryl dipyrrinato ligands. Access to these complexes proceeds via the reaction of [Re(CO)(5)Cl] with the dipyrrin (LH) to produce fac-[ReL(CO)(3)Cl](-). A subsequent reaction with PR(3) (R = phenyl, butyl) leads to displacement of the chloride ligand to generate fac-[ReL(CO)(3)PR(3)], and further reaction with PR'(3) leads to the displacement of the CO ligand trans to the first PR(3) ligand to give trans(P), cis(C)-[ReL(CO)(2)(PR(3))(PR'(3))]. The structures of the complexes were determined in the solid state by X-ray crystallography and in solution by (1)H NMR spectroscopy. Electronic absorption spectroscopy reveals a prominent band in the visible region at relatively low energy (472-491 nm) for all complexes, which is assigned as a π-π* transition of the dipyrrin chromophore. Weak emission (λ(ex) = 485 nm, quantum yields <0.01) was observed for [ReL(CO)(3)Cl](-) and [ReL(CO)(3)PR(3)] complexes, but no emission was generally evident from the [ReL(CO)(2)(PR(3))(PR'(3))] complexes. On the basis of the large Stokes shift (~6000 cm(-1)), the emission is ascribed to phosphorescence from a triplet excited state. The emission intensity is sensitive to dissolved oxygen and methyl viologen; a Stern-Volmer plot in the latter case gave a straight line. Photochemical ligand substitution reactions of [ReL(CO)(3)PR(3)] were induced by excitation with a 355 nm laser in acetonitrile. [ReL(CO)(2)(PR(3))(CH(3)CN)] is formed as a putative intermediate, which reacts thermally with added PR'(3) to produce [ReL(CO)(2)(PR(3))(PR'(3))] complexes.  相似文献   

8.
Thermolysis of solid [Ru(d(t)bpe)(CO)2Cl2](2, d(t)bpe =(t)Bu2PCH2CH2P(t)Bu2) under vacuum affords the five-coordinate complex [Ru(d(t)bpe)(CO)Cl2] (4), which was shown by X-ray crystallography to contain a weak remote agostic interaction. In solution, 4 can be readily trapped by CO, CH3CN or water to give [Ru(d(t)bpe)(CO)(L)Cl2](L = CO, 2; L = CH3CN, 6; L = H2O, 7). Reaction of 4 with AgOTf/H2O yields the tris-aqua complex [Ru(d(t)bpe)(CO)(H2O)3](OTf)2 (8), which has been structurally characterised and probed in solution by pulsed-gradient spin echo (PGSE) NMR spectroscopy. The water ligands in 8 are labile and easily substituted to give [Ru(d(t)bpe)(CO)(NCCH3)3](OTf)2 (10) and [Ru(d(t)bpe)(CO)(DMSO)3](OTf)2 (11). In the presence of CO, the tris-aqua complex undergoes water-gas shift chemistry with formation of the cationic hydride species [Ru(d(t)bpe)(CO)3H](OTf) (12) and CO2. X-Ray crystal structures of complexes 2, 4, 6, 8 and 11-12 are reported along with those for [{Ru(d(t)bpe)(CO)}2(mu-Cl)2(mu-OTf)](OTf) (3), [{Ru(d(t)bpe)(CO)}2(mu-Cl)3][Ru(d(t)bpe)(CO)Cl3](5) and [Ru(d(t)bpe)(CO)(H2O)2(OTf)](OTf)(9).  相似文献   

9.
Compound cis,fac-[Mo(eta3-allyl)(CO)2(Hdmpz)3]BAr'4 (1) (Hdmpz = 3,5-dimethylpyrazole, Ar' = 3,5-bis(trifluoromethyl)phenyl) undergoes rapid substitution of one of the pyrazole ligands by anions, including the low nucleophilic ReO4-, a reaction that afforded [Mo(OReO3)(eta3-allyl)(CO)2(Hdmpz)2] (2), structurally characterized by X-ray diffraction. The new compounds fac-[Mn(CO)3(Hdmpz)3]BAr'4 (4a) and fac-[Mn(CO)3(HtBupz)3]BAr'4 (4b) (HtBupz = 3(5)-tert-butylpyrazole) also undergo pyrazole substitution with most anions, and the product from the reaction with nitrate was crystallographically characterized. Compounds 4a,b were found to be substitutionally stable toward perrhenate, and the adducts [Mn(CO)3(Hdmpz)3].[ReO4] (7a) and [Mn(CO)3(HtBupz)3].[ReO4].[Bu4N].[BAr'4] (7b), crystallographically characterized, display hydrogen bonds between one of the perrhenate oxygens and the N-H groups of two of the pyrazole ligands. The structurally similar adduct [Re(CO)3(Hdmpz)3].[ReO4] (8) was found to result from the interaction of [Re(CO)3(Hdmpz)3]BAr'4 with perrhenate. The reaction of [Re(OTf)(CO)5] with 3,5-dimethylpyrazole (Hdmpz) afforded [Re(CO)5(Hdmpz)]OTf (9). The reaction of 9 with Hdmpz and NaBAr'4 yielded [Re(CO)4(Hdmpz)2]BAr'4 (10), which was found to be unstable toward chloride anion. In contrast, the new compound fac,cis-[Re(CO)3(CNtBu)(Hdmpz)2]BAr'4 (11) is stable in solution in the presence of different anions. Binding constants for 11 with chloride, bromide, and nitrate are 1-2 orders of magnitude lower than those found for these anions and rhenium tris(pyrazole) hosts, indicating that the presence of the third pyrazole ligand is crucial. Compounds fac-[Re(CO)3(HPhpz)3]BAr'4 (14) (HPhpz = 3(5)-phenylpyrazole) and fac-[Re(CO)3(HIndz)3]BAr'4 (15) (HIndz = indazole) are, in terms of anion binding strength and selectivity, inferior to those with dimethylpyrazole or tert-butylpyrazole ligands.  相似文献   

10.
Six metal carbido-carbonyl clusters have been isolated and recognized as members of a multivalent family based on the dioctahedral Rh(10)(C)(2) frame, with variable numbers of CO ligands, AuPPh(3) moieties, and anionic charge: [Rh(10)(C)(2)(CO)(x)(AuPPh(3))(y)](n-) (x = 18, 20; y = 4, 5, 6; n = 0, 1, 2). Anions [Rh(10)(C)(2)(CO)(18)(AuPPh(3))(4)](-) ([2](-)) and [Rh(10)(C)(2)(CO)(18)(AuPPh(3))(4)](2-) ([2](2-)) have been obtained by the reduction of [Rh(10)(C)(2)(CO)(18)(AuPPh(3))(4)] (2) under N(2), while [Rh(10)(C)(2)(CO)(18)(AuPPh(3))(5)](-) ([3](-)) was obtained from [Rh(10)(C)(2)(CO)(20)(AuPPh(3))(4)] (1) by reduction under a CO atmosphere. [3](-) can be better obtained by the addition of AuPPh(3)Cl to [2](2-). [Rh(10)(C)(2)(CO)(18)(AuPPh(3))(6)] (4) is obtained from [3](-) and 2 as well by the reduction and subsequent addition of AuPPh(3)Cl. The molecular structures of [2](2-) ([NBu(4)](+) salt), [3](-) ([NMe(4)](+) salt), and 4 have been determined by single-crystal X-ray diffraction. The redox activities of complexes 1, 2 and [3](-) have been investigated by electrochemical and electron paramagnetic resonance (EPR) techniques. The data from EPR spectroscopy have been accounted for by theoretical calculations.  相似文献   

11.
Hexarhenium(III) complexes with terminal isothiocyanate ligands, [(n-C(4)H(9))(4)N](4)[Re(6)(mu(3)-S)(8)(NCS)(6)] (1) and (L)(4)[Re(6)(mu(3)-Se)(8)(NCS)(6)] (L(+) = PPN(+) (2a), (n-C(4)H(9))(4)N(+) (2b)), have been prepared by three different methods. Complex 1 was prepared by the reaction of [(n-C(4)H(9))(4)N](4)[Re(6)(mu(3)-S)(8)Cl(6)] with molten KSCN at 200 degrees C, while 2b was obtained by refluxing the chlorobenzene-DMF (2:1 v/v) solution of [Re(6)(mu(3)-Se)(8)(CH(3)CN)(6)](SbF(6))(2) and [(n-C(4)H(9))(4)N]SCN. The [Re(6)(mu(3)-Se)(8)(NCS)(6)](4)(-) anion was also obtained from a mixture of Cs(2)[Re(6)(mu(3)-Se)(8)Br(4)] and KSCN in C(2)H(5)OH by a mechanochemical activation at room temperature for 20 h and isolated as 2a. The X-ray structures of 1 and 2a.4DMF have been determined (1, C(70)H(144)N(10)S(14)Re(6), monoclinic, space group P2(1)/n (No. 14), a = 14.464(7) A, b = 22.059(6) A, c = 16.642(8) A, beta = 113.62(3) degrees, V = 4864(3) A(3), Z = 2; 2a.4DMF, C(162)H(144)N(14)O(4)P(8)S(6)Se(8)Re(6), triclinic, space group P1 (No. 2), a = 15.263(2) A, b = 16.429(2) A, c = 17.111(3) A, alpha = 84.07(1) degrees, beta = 84.95(1) degrees, gamma = 74.21(1) degrees, V = 4098.3(8) A(3), Z = 1). All the NCS(-) ligands in both complexes are coordinated to the metal center via nitrogen site with the Re-N distances in the range of 2.07-2.13 A. The redox potentials of the reversible Re(III)(6)/Re(III)(5)Re(IV) process in acetonitrile are +0.84 and +0.70 V vs. Ag/AgCl for [Re(6)(mu(3)-S)(8)(NCS)(6)](4)(-) and [Re(6)(mu(3)-Se)(8)(NCS)(6)](4)(-), respectively, which are the most positive among the known hexarhenium complexes with six terminal anionic ligands. The complexes show strong red luminescence with the emission maxima (lambda(max)/nm), lifetimes (tau(em)/micros), and quantum yields (phi(em)) being 745 and 715, 10.4 and 11.8, and 0.091 and 0.15 for 1 and 2b, respectively, in acetonitrile. The data reasonably well fit in the energy-gap plots of other hexarhenium(III) complexes. The temperature dependence of the emission spectra and tau(em) of 1 and [(n-C(4)H(9))(4)N](4)[Re(6)(mu(3)-S)(8)Cl(6)] are also reported.  相似文献   

12.
Copper(I) and rhenium(I) complexes [Cu(PPh(3))(2)(dppz-11-COOEt)]BF(4), [Cu(PPh(3))(2)(dppz-11-Br)]BF(4), [Re(CO)(3)Cl(dppz-11-COOEt)] and [Re(CO)(3)Cl(dppz-11-Br)] (dppz-11-COOEt = dipyrido-[3,2a:2',3'c]phenazine-11-carboxylic ethyl ester, dppz-11-Br = 11-bromo-dipyrido[3,2a:2',3'c]-phenazine) have been studied using Raman, resonance Raman, and transient resonance Raman (TR(2)) spectroscopy, in conjunction with computational chemistry. DFT (B3LYP) frequency calculations with a 6-31G(d) basis set for the ligands and copper(I) centers and an effective core potential (LANL2DZ) for rhenium in the rhenium(I) complexes show close agreement with the experimental nonresonance Raman spectra. Modes that are phenazine-based, phenanthroline-based, and delocalized across the entire ligand structure were identified. The nature of the absorbing chromophores at 356 nm for ligands and complexes was established using resonance Raman spectroscopy in concert with vibrational assignments from calculations. This analysis reveals that the dominant chromophore for the complexes measured at 356 nm is ligand-centered (LC), except for [Re(CO)(3)Cl(dppz-11-Br)], which appears to have additional chromophores at this wavelength. Calculations on the reduced complexes, undertaken to model the metal-to-ligand charge transfer (MLCT) excited state, show that the reducing electron occupies a ligand MO that is delocalized across the ligand structure. Resonance Raman spectra (lambda(exc) = 514.5 nm) of the reduced rhenium complexes show a similar spectral pattern to that observed in [Re(CO)(3)Cl(dppz)](*-); the measured bands are therefore attributed to ligand radical anion modes. These bands lie at 1583-1593 cm(-1) for [Re(CO)(3)Cl(dppz-11-COOEt)] and 1611 cm(-1) for [Re(CO)(3)Cl(dppz-11-Br)]. The thermally equilibrated excited states are examined using nanosecond-TR(2) spectroscopy (lambda(exc) = 354.7 nm). The TR(2) spectra of the ligands provide spectral signatures for the (3)LC state. A band at 1382 cm(-1) is identified as a marker for the (3)LC states of both ligands. TR(2) spectra of the copper and rhenium complexes of dppz-11-Br show this (3)LC band, but it is not prominent in the spectra of [Cu(PPh(3))(2)(dppz-11-COOEt)](+) and [Re(CO)(3)Cl(dppz-11-COOEt)]. Calculations suggest that the lowest triplet states of both of the rhenium(I) complexes and [Cu(PPh(3))(2)(dppz-11-Br)](+) are metal-to-ligand charge transfer in nature, but the lowest triplet state of [Cu(PPh(3))(2)(dppz-11-COOEt)](+) appears to be LC in character.  相似文献   

13.
A comparative study of the reactivity of isolobal rhenium and molybdenum carbonylmetallates containing a borole, in [Re(eta5-C4H4BPh)(CO)3]- (2), a boratanaphthalene, in [Mo(eta5-2,4-MeC9H6BMe)(CO)3]- (4a) and [Mo(eta5-2,4-MeC9H6BNi-Pr2)(CO)3]- (4b), a boratabenzene, in [Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3]- (6) or a dimethylaminocyclopentadienyl ligand, in [Mo(eta5-C5H4NMe2)(CO)3]- (7), toward palladium(II), gold(I), mercury(II) and platinum(II) complexes has allowed an evaluation of the role of these pi-bonded ligands on the structures and unprecedented coordination modes observed in the resulting metal-metal bonded, heterometallic complexes. The new metallate 6 was reacted with [AuCl(PPh3)], and with 1 or 2 equiv. HgCl2, which afforded the new heterodinuclear complexes [Au{Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3}(PPh3)] (Mo-Au) (10) and [Hg{Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3}Cl] (Hg-Mo) (11) and the heterometallic chain complex [Hg{Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3}2] (Mo-Hg-Mo) (12), respectively. Reactions of the new metallate 7 with HgCl2, trans-[PtCl2(CNt-Bu)2] and trans-[PtCl2(NCPh)2] yielded the heterodinuclear complex [Hg{Mo(eta5-C5H4NMe2)(CO)3}Cl] (Mo-Hg) (15), the heterotrinuclear chain complexes trans-[Pt{Mo(eta5-C5H4NMe2)(CO)3}2(CNt-Bu)2] (Mo-Pt-Mo) (16) and trans-[Pt{Mo(eta5-C5H4NMe2)(CO)3}2(NCPh)2] (Mo-Pt-Mo) (17), the mononuclear complex [Mo(eta5-C5H4NMe2)(CO)3Cl] (18), the lozenge-type cluster [Mo2Pt2(eta5-C5H4NMe2)2(CO)8] (19) and the heterodinuclear complex [[upper bond 1 start]Pt{Mo(eta5-C5H4N[upper bond 1 end]Me2)(CO)3}(NCPh)Cl](Mo-Pt) (20), respectively. The complexes 11, 16, 17.2THF, 18 and 20 have been structurally characterized by X-ray diffraction and 20 differs from all other compounds in that the dimethylaminocyclopentadienyl ligand forms a bridge between the metals.  相似文献   

14.
Photochemical ligand substitution of fac-[Re(X2bpy)(CO)3(PR3)]+ (X2bpy = 4,4'-X2-2,2'-bipyridine; X = Me, H, CF3; R = OEt, Ph) with acetonitrile quantitatively gave a new class of biscarbonyl complexes, cis,trans[Re(X2bpy)(CO)2(PR3)(MeCN)]+, coordinated with four different kinds of ligands. Similarly, other biscarbonylrhenium complexes, cis,trans-[Re(X2bpy)(CO)2(PR3)(Y)]n+ (n = 0, Y = Cl-; n = 1, Y = pyridine, PR'3), were synthesized in good yields via photochemical ligand substitution reactions. The structure of cis,trans-[Re(Me2bpy)(CO)2[P(OEt)3](PPh3)](PF6) was determined by X-ray analysis. Crystal data: C38H42N2O5F6P3Re, monoclinic, P2(1/a), a = 11.592(1) A, b = 30.953(4) A, c = 11.799(2) A, V = 4221.6(1) A3, Z = 4, 7813 reflections, R = 0.066. The biscarbonyl complexes with two phosphorus ligands were strongly emissive from their 3MLCT state with lifetimes of 20-640 ns in fluid solutions at room temperature. Only weak or no emission was observed in the cases Y = Cl-, MeCN, and pyridine. Electrochemical reduction of the biscarbonyl complexes with Y = Cl- and pyridine in MeCN resulted in efficient ligand substitution to give the solvento complexes cis,trans-[Re(X2bpy)(CO)2(PR3)(MeCN)]+.  相似文献   

15.
Excitation by high-energy light, such as that of 313 nm wavelength, induces a photochemical ligand substitution (PLS) reaction of fac-[Re(bpy)(CO)3Cl] (1a) to give the solvento complexes (OC-6-34)- and (OC-6-44)-[Re(bpy)(CO)2(MeCN)Cl] (2 and 3) in good yields. The disappearance quantum yield of 1a was 0.01+/-0.001 at 313 nm. The products were isolated, and X-ray crystallographic analysis was successfully performed for 2. Time-resolved IR measurements clearly indicated that the CO ligand dissociates with subpicosecond rates after excitation, leading to vibrationally hot photoproducts, which relax within 50-100 ps. Detailed studies of the reaction mechanism show that the PLS reaction of 1a does not proceed via the lowest vibrational level in the 3MLCT excited state. The PLS reaction gives 2 and (OC-6-24)-[Re(bpy)(CO)2(MeCN)Cl] (5) as primary products, and one of the products, 5, isomerizes to 3. This type of PLS reaction is more general, occurring in various fac-rhenium(I) diimine tricarbonyl complexes such as fac-[Re(X2bpy)(CO)3Cl] (X2bpy=4,4'-X2-bpy; X=MeO, NH2, CF3), fac-[Re(bpy)(CO)3(pyridine)]+, and fac-[Re(bpy)(CO)3(MeCN)]+. The stable photoproducts (OC-6-44)- and (OC-6-43)-[Re(bpy)(CO)2(MeCN)(pyridine)]+ and (OC-6-32)- and (OC-6-33)-[Re(bpy)(CO)2(MeCN)2]+ were isolated. The PLS reaction of rhenium tricarbonyl-diimine complexes is therefore applicable as a general synthetic method for novel dicarbonyls.  相似文献   

16.
The radical complexes [(micro-L)[Ru(bpy)(2)](2)]*(3+), [(micro-bmtz)[Ru(cym)Cl](2)]*(+) and [(micro-L)[Re(CO)(3)Cl](2)]*(-), where L are 3,6-disubstituted 1,2,4,5-tetrazines such as 3,6-bis(2-pyrimidyl)-1,2,4,5-tetrazine (bmtz) and cym =p-cymene, were studied by X-band EPR in fluid solution and by 285 GHz EPR in glassy frozen solution. A comparison with other transition metal complexes (Cu, Rh, Os, Ir, Pt) involving tetrazine radical ligands reveals that the g anisotropy reflects (i) the pi acceptor effect of the tetrazine substituents, (ii) the competition from ancillary pi acceptor ligands for back donation from the metal, and (iii) the spin-orbit coupling contributions from the transition metal.  相似文献   

17.
The reactivity of isolobal molybdenum carbonylmetalates containing a 2-boratanaphthalene, [Mo(eta5-2,4-MeC9H6BMe)(CO)3]- (5a) and [Mo(eta5-2,4-MeC9H6BNi-Pr2)(CO)3]- (5b), a 1-boratabenzene, [Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3]- (8), or a functionalized cyclopentadienyl ligand, the new metalate [Mo(eta5-C5H4Ph)(CO)3]- (7) and [Mo(eta5-C5H4NMe2)(CO)3]- (9), toward palladium (I and II) or platinum (I and II) complexes, such as trans-[PdCl2(NCPh)2], [Pd2(NCMe)6](BF4)2, trans-[PtCl2(PEt3)2], and [N(n-Bu)4]2 [Pt2Cl4(CO)2], has been investigated, and this has allowed an evaluation of the influence of the pi-bonded ligands on the structures and unprecedented coordination modes observed in the resulting metal-metal-bonded heterometallic clusters. The new 58 CVE planar-triangulated centrosymmetric clusters, [Mo2Pd2(eta5-C5H4Ph)2(CO)6(PEt3)2] (11), [Mo2Pd2(eta5-2,4-MeC9H6BNi-Pr2)2(CO)6] (12), [Mo(2)Pd(2)(eta5-3,5-Me2C5H3BNi-Pr2)2(CO)6] (13), [Mo2Pd2(eta5-C5H4NMe2)2(CO)6(PEt3)2] (15), [Mo2Pt2(eta5-C5H4NMe2)2(CO)6(PEt3)2] (16), and [Mo2Pt2(eta5-C5H4NMe2)2(CO)8] (20), have been characterized by single-crystal X-ray diffraction. Their structural features were compared with those of the 54 CVE cluster [Re2Pd2(eta5-C4H4BPh)2(CO)6)] (4), previously obtained from the borole-containing metalate [Re(eta5-C4H4BPh)(CO)3]- (2), in which a 2e-3c B-C(ipso)-Pd interaction involving the pi-ring was observed. As an extension of what has been observed in 4, clusters 12 and 13 present a direct interaction of the boratanaphthalene (12) and the boratabenzene (13) ligands with palladium. In clusters 11, 15, 16, and 20, the pi-ring does not interact with the palladium (11 and 15) or platinum centers (16 and 20), which confers to these clusters a geometry very similar to that of [Mo2Pd2(eta5-C5H5)2(CO)6(PEt3)2] (3b). The carbonylmetalates [Mo(pi-ring)(CO)3]- are thus best viewed as formal four electron donors which bridge a dinuclear d9-d9 unit. The orientation of this building block in the clusters influences the shape of their metal cores and the bonding mode of the bridging carbonyl ligands. The crystal structure of new centrosymmetric complex [Mo(eta5-C5H4Ph)(CO)3]2 (10) was determined, and it revealed intramolecular contacts of 2.773(4) A between the carbon atoms of carbonyl groups across the metal-metal bond and intermolecular bifurcated interactions between the carbonyl oxygen atoms (2.938(4) and 3.029(4) A), as well as intermolecular C-H...pi(Ar)(C=C) interactions (2.334(3) and 2.786(4) A) involving the phenyl substituents.  相似文献   

18.
A series of Re(I) complexes, [Re(CO)(3)Cl(HPB)] (1), [Re(CO)(3)(PB)H(2)O] (2), [Re(CO)(3)(NO(3))(PB-AuPPh(3))] (3), and [Re(CO)(3)(NO(3))(PB)Au(dppm-H)Au](2) (4) [HPB = 2-(2'-pyridyl)benzimidazole; dppm = 2,2'-bis(diphenylphosphinomethane)], have been synthesized and characterized by X-ray diffraction. Complex 1, which exhibits interesting pH-dependent spectroscopic and luminescent properties, was prepared by reacting Re(CO)(5)Cl with an equimolar amount of 2-(2'-pyridyl)benzimidazole. The imidazole unit in complex 1 can be deprotonated to form the imidazolate unit to give complex 2. Addition of 1 equiv of AuPPh(3)(NO(3)) to complex 2 led to the formation of a heteronuclear complex 3. Addition of a half an equivalent of dppm(Au(NO(3)))(2) to complex 2 yielded 4. In both 3 and 4, the imidazolate unit acts as a multinuclear bridging ligand. Complex 4 is a rare and remarkable example of a Re(2)Au(4) aggregate in combination with μ(3)-bridging 2-(2'-pyridyl)benzimidazolate. Finally, complex 2 has been used to examine the Hg(2+)-recognition event among group 12 metal ions. Its reversibility and selectivity toward Hg(2+) are also examined.  相似文献   

19.
The reaction of [PPN](3)[Re(7)C(CO)(21)] with Hg(2)(NO(3))(2).2H(2)O in dichloromethane formed the complex [PPN](4)[(Re(7)C(CO)(21)Hg)(2)] ([PPN](4)[1]), isolated in 60% yield. Analogous salts of [1](4-) with [PPh(4)](+) and [NEt(4)](+) were also prepared. The crystal structure of [PPN](4)[1] showed that two carbidoheptarhenate cores are linked by a dimercury(I) unit (d(Hg-Hg) = 2.610(4) A), with each individual mercury atom face-bridging. Oxidative cleavage of the Hg-Hg bond in [1](4-) was effected by 4-bromophenyl disulfide to form [Re(7)C(CO)(21)HgSC(6)H(4)Br](2-) ([4](2-)), by I(2) to form [Re(7)C(CO)(21)HgI](2-) ([5](2-)), and by Br(2) to form [Re(7)C(CO)(21)HgBr](2-) ([6](2-)). Oxidation of [1](4-) by ferrocenium ion (2 equiv) in the presence of tetramethylthiourea resulted in the derivative [Re(7)C(CO)(21)HgSC(NMe(2))(2)](-) ([7](-)). The molecular structure of [PPN][7] was determined by X-ray crystallography. This is the first example of a carbidoheptarhenate-mercury complex with a neutral ligand on mercury, and ligand exchange was demonstrated by displacement with triethylphosphine. Complex [7](-) can also be prepared by protonating [Re(7)C(CO)(21)HgO(2)CCH(3)](2-) in the presence of tetramethylthiourea. Cyclic voltammetry data to calibrate and compare the redox properties of compounds [1](4-) and [7](-) have been measured.  相似文献   

20.
Dimerization of the alkynylcarbene complex Cp(CO)(2)Re=C(Tol)C(triple bond)CCH(3) (8) occurs at 100 degrees C to give a 1.2:1 mixture of enediyne complexes [Cp(CO)(2)Re](2)[eta(2),eta(2)-TolC(triple bond)CC(CH(3))=C(CH(3))C(triple bond)CTol] (10-Eand 10-Z), showing no intrinsic bias toward trans-enediyne complexes. The cyclopropyl-substituted alkynylcarbene complex Cp(CO)(2)Re=C(Tol)C(triple bond)CC(3)H(5) (11) dimerizes at 120 degrees C to give a 5:1 ratio of enediyne complexes [Cp(CO)(2)Re](2)[eta(2),eta(2)-TolC(triple bond)C(C(3)H(5))C=C(C(3)H(5))C(triple bond)CTol] (12-E and 12-Z); no ring expansion product was observed. This suggests that if intermediate A formed by a [1,1.5] Re shift and having carbene character at the remote alkynyl carbon is involved, then interaction of the neighboring Re with the carbene center greatly diminishes the carbene character as compared with that of free cyclopropyl carbenes. The tethered bis-(alkynylcarbene) complex Cp(CO)(2)Re=C(Tol)C(triple bond)CCH(2)CH(2)CH(2)C(triple bond)CC(Tol)= Re(CO)(2)Cp (13) dimerizes rapidly at 12 degrees C to give the cyclic cis-enediyne complex [Cp(CO)(2)Re](2)[eta(2),eta(2)-TolC(triple bond)CC(CH(2)CH(2)CH(2))=CC(triple bond)CTol] (15). Attempted synthesis of the 1,8-disubstituted naphthalene derivative 1,8-[Cp(CO)(2)Re=C(Tol)C(triple bond)C](2)C(10)H(6) (16), in which the alkynylcarbene units are constrained to a parallel geometry, leads to dimerization to [Cp(CO)(2)Re](2)(eta(2),eta(2)-1,2-(tolylethynyl)acenaphthylene] (17). The very rapid dimerizations of both 13 and 16 provide compelling evidence against mechanisms involving cyclopropene intermediates. A mechanism is proposed which involves rate-determining addition of the carbene center of A to the remote alkynyl carbon of a second alkynylcarbene complex to generate vinyl carbene intermediate C, and rearrangement of C to the enediyne complex by a [1,1.5] Re shift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号