首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
One of the main targets of studies on water splitting photocatalysts is to develop semiconductor materials with narrower bandgaps capable of overall water splitting for efficient harvesting of solar energy. A series of transition‐metal oxynitrides, LaMgxTa1?xO1+3xN2?3x (x≥1/3), with a complex perovskite structure was reported as the first example of overall water splitting operable at up to 600 nm. The photocatalytic behavior of LaMg1/3Ta2/3O2N was investigated in detail in order to optimize photocatalyst preparation and water‐splitting activity. Various attempts exploring photocatalyst preparation steps, that is, cocatalyst selection, coating material and method, and synthesis method for the oxide precursor, revealed photocatalyst structures necessary for achieving overall water splitting. Careful examination of photocatalyst preparation procedures likely enhanced the quality of the produced photocatalyst, leading to a more homogeneous coating quality and semiconductor particles with fewer defects. Thus, the photocatalytic activity for water splitting on LaMg1/3Ta2/3O2N was largely enhanced.  相似文献   

2.
Subsolidus phase equilibria and crystal chemistry were studied for the La2O3-MgO-TiO2 system and for the ternary sections LaMg1/2Ti1/2O3-CaTiO3-La2O3 and LaMg1/2Ti1/2O3-CaTiO3-La0.833Mg0.25Ti0.75O3 in the quaternary La2O3-CaO-MgO-TiO2 system. Dielectric properties (relative permittivity and temperature coefficient of resonant frequency, τf) were measured at 5-10 GHz and mapped onto the phase equilibria relations to reveal the compositions of temperature-stable (τf=0) compounds and mixtures. Phase equilibria relations were obtained by X-ray powder diffraction analysis of approximately 80 specimens prepared by solid-state reactions in air at ∼1450°C. Six ternary phases were found to form in the La2O3-MgO-TiO2 system, including the three previously reported compounds LaMg1/2Ti1/2O3, La5Mg0.5Ti3.5O15, and “La6MgTi4O18”; and the new phases La10MgTi9O34, La9Mg0.5Ti8.5O31, and a perovskite-type solid solution (1−x)LaMg1/2Ti1/2O3-xLa2/3TiO3 (0?x?0.5). The phase previously reported as “La6MgTi4O18” was found to form off-composition, apparently as a point compound, at La6Mg0.913Ti4.04O18. Indexed experimental X-ray powder diffraction patterns are given for LaMg1/2Ti1/2O3, La5Mg0.5Ti3.5O15, La6Mg0.913Ti4.04O18, La10MgTi9O34, and La9Mg0.5Ti8.5O31. LaMg1/2Ti1/2O3 exhibits a slightly distorted perovskite structure with ordered B-cations (P21/n; a=5.5608(2) Å, b=5.5749(3) Å, c=7.8610(5) Å, β=90.034(4)°). La5Mg0.5Ti3.5O15 (Pm1; a=5.5639(1), c=10.9928(5) Å) and La6Mg0.913Ti4.04O18 (R3m; a=5.5665(1), c=39.7354(9) Å) are n=5 and n=6 members, respectively, of the (111) perovskite-slab series AnBn−1O3n. The new phases La10MgTi9O34 (a=5.5411(2), b=31.3039(9), c=3.9167(1) Å) and La9Mg0.5Ti8.5O31 (a=5.5431(2), b=57.055(1), c=3.9123(1) Å) are n=5 and n=4.5 members, respectively, of the (110) perovskite-slab series AnBnO3n+2, which exhibit orthorhombic subcells; electron diffraction revealed monoclinic superlattices with doubled c-parameters for both compounds. Extensive perovskite-type solid solutions form in the ternary sections LaMg1/2Ti1/2O3-CaTiO3-La2O3 and LaMg1/2Ti1/2O3-CaTiO3-La0.833Mg0.25Ti0.75O3. The La2O3-MgO-TiO2 system contains two regions of temperature-stable (τf=0) compositions. The quaternary La2O3-CaO-MgO-TiO2 system contains an extensive single-phase perovskite-type volume through which passes a surface of temperature-stable compositions with permittivities projected to be in the 40-50 range. Traces of this surface occur as lines of τf=0 perovskite-type phases in the ternary sections LaMg1/2Ti1/2O3-CaTiO3-La2O3 and LaMg1/2Ti1/2O3-CaTiO3-La0.833Mg0.25Ti0.75O3.  相似文献   

3.
以质子化层状钙钛矿氧化物H1.9K0.3La0.5Bi0.1Ta2O7 (HKLBT)作为产氢催化剂, Pt/WO3作为产氧催化材料进行Z 型体系下完全分解水反应. 考察了不同载流子传递介质及不同载流子浓度对反应活性的影响. 结果表明, 以Fe2+/Fe3+为载流子传递介质时可以实现水的完全分解(H2/O2体积比为2:1), 8 mmol·L-1的FeCl3作为初始载流子传递介质时, 产氢、产氧活性分别为66.8和31.8 μmol·h-1, 氢氧体积比为2.1:1. 受光催化材料对载流子传递介质氧化还原速度的限制, 过高的载流子传递介质浓度并不能提高光催化活性.  相似文献   

4.
Three new tellurites, LaTeNbO6 and La4Te6M2O23 (M=Nb or Ta) have been synthesized, as bulk phase powders and crystals, by using La2O3, Nb2O5 (or Ta2O5), and TeO2 as reagents. The structures of LaTeNbO6 and La4Te6Ta2O23 were determined by single crystal X-ray diffraction. LaTeNbO6 consists of one-dimensional corner-linked chains of NbO6 octahedra that are connected by TeO3 polyhedra. La4Te6M2O23 (M=Nb or Ta) is composed of corner-linked chains of MO6 octahedra that are also connected by TeO4 and two TeO3 polyhedra. In all of the reported materials, Te4+ is in an asymmetric coordination environment attributable to its stereo-active lone-pair. Infrared, thermogravimetric, and dielectric analyses are also presented. Crystallographic information: LaTeNbO6, triclinic, space group P−1, a=6.7842(6) Å, b=7.4473(6) Å, c=10.7519(9) Å, α=79.6490(10)°, β=76.920(2)°, γ=89.923(2)°, Z=4; La4Te6Ta2O23, monoclinic, space group C2/c, a=23.4676(17) Å, b=12.1291(9) Å, c=7.6416(6) Å, β=101.2580(10)°, Z=4.  相似文献   

5.
New weberite-type Ca2Ta2O7 and zirconolite-type CaZrTi2O7 polytypes have been prepared by doping with Nd/Zr and Th/Al, respectively, and their structures have been refined using single-crystal X-ray diffraction intensity data. The 3T zirconolite polytype, Ca0.8Ti1.35Zr1.3Th0.15Al0.4O7, has a=7.228(1), c=16.805(1) Å. The 3T weberite-type polytype, Ca1.92Ta1.92Nd0.08Zr0.08O7, has a=7.356(1), c=18.116(1) Å. Both 3T polytypes have space group P3121, Z=6. The 4M Ca2Ta2O7 polytype has the same composition, from electron microprobe analyses, as the 3T polytype, and has cell parameters: a=12.761(1), b=7.358(1), c=24.565(1) Å, β=100.17(1)°, space group C2, Z=16. The structural relationships between the different zirconolite and weberite polytypes are discussed. A consideration of the structures from the viewpoint of anion-centered tetrahedral arrays shows that zirconolite can be considered as an anion-deficient fluorite derivative phase. However, the fluorite-type topology of edge-shared OM4 tetrahedra is not maintained in the Ca2Ta2O7 weberite-type polytypes, even though they have a fluorite-like fcc packing of metal atoms. One of the oxygen atoms moves from a tetrahedral Ta3Ca interstice to an adjacent Ta2Ca4 octahedral interstice in the weberite polytypes.  相似文献   

6.
Detailed emission and excitation spectra and decay measurements of the luminescence of the system Mg4Ta2?xNbxO9 are reported. In Mg4Ta2O9 a new emission and excitation band at relatively low energy has been found. In the samples with a high niobium concentration (x ? 1) a new weak orange emission has been observed upon long-wavelength uv excitation. A new interpretation of the results, based on the occurrence of different niobate or tantalate centers, is presented.  相似文献   

7.
采用感应熔炼技术在Ar气氛保护下制备得到LaMg2Ni与Mg2Ni合金。X射线衍射(XRD)图表明LaMg2Ni合金在吸氢过程中分解为LaH3相和Mg2NiH4相,放氢过程中LaH3相转化为La3H7相。与Mg2Ni合金相比,LaMg2Ni合金显示出优良的吸氢动力学性能,这是由于镧氢化合物的存在及其在吸氢过程中所发生的相转变所造成的。LaMg2Ni合金280 s内吸氢即可达到最大储氢量的90%以上,而Mg2Ni合金则需要1200 s才能达到,且在相同温度下LaMg2Ni合金的吸氢反应速率常数大于Mg2Ni合金速率常数。镧氢化合物不仅有利于改善动力学性能,而且可以提高热力学性能。LaMg2Ni合金中的Mg2Ni相氢化反应焓与熵分别为-53.02 kJ.mol-1和84.96 J.K-1.mol-1(H2),这一数值小于单相Mg2Ni氢化反应焓与熵(-64.50 kJ.mol-1,-123.10 J.K-1.mol-1(H2))。压力-组成-温度(P-C-T)测试结果表明在603 K至523 K温度范围内,LaMg2Ni合金储氢容量保持稳定为1.95wt%左右,然而Mg2Ni合金的储氢容量则由4.09wt%衰减为3.13wt%,Mg2Ni合金的储氢容量在523K低温下仅为603 K时的76.5%,表明镧氢化合物能够改善Mg2Ni合金低温下的吸放氢性能。  相似文献   

8.
采用柠檬酸络合法制备铋层钙钛矿K0.5La0.5Bi2Ta2O9 (KLBT), 通过酸化处理得到质子化层状钙钛矿H1.9K0.3La0.5Bi0.1Ta2O7(HKLBT)光催化剂, 并通过热重-差热(TG-DSC)、X射线衍射(XRD)、紫外-可见漫反射(DRS)、X射线光电子能谱(XPS)等技术对其进行了表征和分析.考察了前驱体KLBT的不同焙烧温度对HKLBT制氢活性的影响. 结果表明, 柠檬酸络合法能在较低温度下合成高结晶度纯相HKLBT, 前驱体经900℃焙烧制备的HKLBT催化剂活性最高, 在纯水中的产氢速率达236.6μmol·h-1; 长时间活性测试表明HKLBT具有完全分解水同时产氢产氧能力,且具有较好的稳定性.  相似文献   

9.
Some dielectric oxides have been synthesized and characterized in the BaO-La2O3-TiO2-Nb2O5 system. Through Rietveld refinement of X-ray powder diffraction data, Ba5LaTi2Nb3O18 and Ba4La2Ti3Nb2O18 are identified as the AnBn−1O3n (n=6) type cation-deficient perovskites with space group and lattice constants , and for Ba5LaTi2Nb3O18; , and for Ba4La2Ti3Nb2O18, respectively. Their ceramics exhibit high dielectric constant up to 57 and high quality factors (Qf) up to 21,273 GHz. The temperature coefficient of resonant frequency (τf) of these ceramics is decreased with the increase of B-site bond valence.  相似文献   

10.
We report the single crystal structures of a series of lanthanide containing tantalates, Ln3Li5Ta2O12 (Ln=La, Pr, Nd) that were obtained out of a reactive lithium hydroxide flux. The structures of Ln3Li5Ta2O12 were determined by single crystal X-ray diffraction, where the Li+ positions and Li+ site occupancies were fixed based on previously reported neutron diffraction data for isostructural compounds. All three oxides crystallize in the cubic space group (No. 230) with lattice parameters a=12.7735(1), 12.6527(1), and 12.5967(1) Å for La3Li5Ta2O12, Pr3Li5Ta2O12, and Nd3Li5Ta2O12, respectively. A UV-Vis diffuse reflectance spectrum of Nd3Li5Ta2O12 was collected to explain its unusual Alexandrite-like optical behavior. To evaluate the transport properties of Nd3Li5Ta2O12, the impedance data were collected in air in the temperature range 300?T(°C)?500.  相似文献   

11.
The effect of glass additives on the densification, phase evolution, microstructure and microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 (BMT) was investigated. Different weight percentages of quenched glass such as B2O3, SiO2, B2O3-SiO2, ZnO-B2O3, 5ZnO-2B2O3, Al2O3-SiO2, Na2O-2B2O3·10H2O, BaO-B2O3-SiO2, MgO-B2O3-SiO2, PbO-B2O3-SiO2, ZnO-B2O3-SiO2 and 2MgO-Al2O3-5SiO2 were added to calcined BMT precursor. The sintering temperature of the glass-added BMT samples were lowered down to 1300 °C compared to solid-state sintering where the temperature was 1650 °C. The formation of high temperature satellite phases such as Ba5Ta4O15 and Ba7Ta6O22 were found to be suppressed by the glass addition. Addition of glass systems such as B2O3, ZnO-B2O3, 5ZnO-2B2O3 and ZnO-B2O3-SiO2 improved the densification and microwave dielectric properties. Other glasses were found to react with BMT to form low-Q phases which prevented densification. The microwave dielectric properties of undoped BMT with a densification of 93.1% of the theoretical density were εr=24.8, and Qu×f=80,000. The BMT doped with 1.0 wt% of B2O3 has Qu×f=124,700, εr=24.2, and . The unloaded Q factor of 0.2 wt% ZnO-B2O3-doped BMT was 136,500 GHz while that of 1.0 wt% of 5ZnO-2B2O3 added ceramic was Qu×f=141,800 GHz. The best microwave quality factor was observed for ZnO-B2O3-SiO2 (ZBS) glass-added ceramics which can act as a perfect liquid-phase medium for the sintering of BMT. The microwave dielectric properties of 0.2 wt% ZBS-added BMT dielectric was Qu×f=152,800 GHz, εr=25.5, and .  相似文献   

12.
Thin crystals of La2O3, LaAlO3, La2/3TiO3, La2TiO5, and La2Ti2O7 have been irradiated in situ using 1 MeV Kr2+ ions at the Intermediate Voltage Electron Microscope-Tandem User Facility (IVEM-Tandem), Argonne National Laboratory (ANL). We observed that La2O3 remained crystalline to a fluence greater than 3.1×1016 ions cm−2 at a temperature of 50 K. The four binary oxide compounds in the two systems were observed through the crystalline-amorphous transition as a function of ion fluence and temperature. Results from the ion irradiations give critical temperatures for amorphisation (Tc) of 647 K for LaAlO3, 840 K for La2Ti2O7, 865 K for La2/3TiO3, and 1027 K for La2TiO5. The Tc values observed in this study, together with previous data for Al2O3 and TiO2, are discussed with reference to the melting points for the La2O3-Al2O3 and La2O3-TiO2 systems and the different local environments within the four crystal structures. Results suggest that there is an observable inverse correlation between Tc and melting temperature (Tm) in the two systems. More complex relationships exist between Tc and crystal structure, with the stoichiometric perovskite LaAlO3 being the most resistant to amorphisation.  相似文献   

13.
Partial replacement of alkaline metals in anhydrous KCa2Ta3O10 and LiCa2Ta3O10 was studied to control interlayer hydration and photocatalytic activity for water splitting under UV irradiation. A1−xNaxCa2Ta3O10·nH2O (A′=K and Li) samples were synthesized by ion exchange of CsCa2Ta3O10 in mixed molten nitrates at 400 °C. In K1−xNaxCa2Ta3O10·nH2O, two phases with the orthorhombic (C222) and tetragonal (I4/mmm) structures were formed at x?0.7 and x?0.5, respectively. Upon replacement by Na+ having a larger enthalpy of hydration (ΔHh0), the interlayer hydration occurred at x?0.3 and the hydration number (n) was increased monotonically with an increase of x. Li1−xNaxCa2Ta3O10·nH2O showed a similar hydration behavior, but the phase was changed from I4/mmm (x<0.5, n∼0) via P4/mmm (x∼0.5, n∼1) to I4/mmm (x∼1.0, n∼2). The photocatalytic activities of these systems after loading 0.5 wt% Ni were quite different each other. K1−xNaxCa2Ta3O10·nH2O exhibited the activity increasing in consistent with n, whereas Li1−xNaxCa2Ta3O10·nH2O exhibited the activity maximum at x=0.77, where the rates of H2/O2 evolution were nearly doubled compared with those for end-member compositions (x=0 and 1).  相似文献   

14.
Preparation of new solid solutions containing divalent europium have been tried in the systems Eu2Nb2O7Sr2Nb2O7 and Eu2Ta2O7Sr2Ta2O7. These solid solutions described as Eu2xSr2(1?x)M2O7 (M = Nb and Ta) exist in a pure orthorhombic phase in a limited region of x from 0 to about 0.5. The compounds with compositions close to Eu2M2O7 exist but techniques have not been found to prepare them in pure form.  相似文献   

15.
A new hexagonal perovskite-type oxide Ba8Ta4Ru8/3Co2/3O24 was synthesized by the solid-state method at 1573 K and characterized by electron diffraction (ED), time-of-flight (TOF) neutron powder diffraction, and magnetic susceptibility. Structure parameters of Ba8Ta4Ru8/3Co2/3O24 were refined by the Rietveld method from the TOF neutron powder diffraction data on the basis of space group P63/mcm and lattice parameters a=10.0075(1) Å and c=18.9248(2) Å as obtained from the ED data (Z=3). The crystal structure of Ba8Ta4Ru8/3Co2/3O24 consists of 8-layered (cchc)2 close-packed stacking of BaO3 layers along the c-axis. Corner-shared octahedra are filled by Ta only and face-shared octahedra are statistically occupied by Ru, Co, and vacancies. Similar compounds Ba8Ta4Ru8/3M2/3O24 with M=Ni and Zn were also prepared. Magnetic susceptibility measurements showed no magnetic ordering down to 5 K.  相似文献   

16.
A quaternary phase, Ba3La3Mn2W3O18, was synthesized in reduced atmosphere (5% H2/Ar) at 1200 °C and characterized by using powder X-ray diffraction, electron diffraction and high resolution TEM. Ba3La3Mn2W3O18 crystallizes in rhombohedral space group with the cell parameters, and , and can be attributed to the n=6 member in the B-site deficient perovskite family, AnBn−1O3n. The structure can be described as close-packed [La/BaO3] arrays in the sequence of (hcccch)3, wherein the B-site cations, W and Mn, occupy five octahedral layers in every six octahedral layers, which leave a vacant octahedral layers separating the 5-layer perovskite blocks. The B-cation layers in the perovskite block alternate along the c-axis in a sequence of W6+-Mn2+-W5+-Mn2+-W6+. The bond valence calculation and optical reflection spectrum confirm the presence of W5+. This compound behaves paramagnetically in wide temperature range and weak antiferromagnetic interaction only occurs at low temperatures.  相似文献   

17.
We have employed aliovalent A-site cation substitution, LaIII-for-SrII, to dope the Sr(Fe0.5Ta0.5)O3 perovskite oxide with electrons. Essentially single-phase samples of (Sr1−xLax)(Fe0.5Ta0.5)O3 were successfully synthesized up to x≈0.3 in a vacuum furnace at 1400 °C. The samples were found to crystallize (rather than with orthorhombic symmetry) in monoclinic space group P21/n that accounts for the partial ordering of the B-site cations, Fe and Ta. With increasing La-substitution level, x, the degree of Fe/Ta order was found to increase such that the La-richest compositions are best described by the B-site ordered double-perovskite formula, (Sr,La)2FeTaO6. From Fe L3 and Ta L3 XANES spectra it was revealed that upon electron doping the two B-site cations, FeIII and TaV, are both prone to reduction. Magnetic susceptibility measurements showed spin-glass type behaviour for all the samples with a transition temperature slightly increasing with increasing x.  相似文献   

18.
采用固相法合成了Sn0.9Mg0.1P2O7, 用扫描电子显微镜(SEM)、X射线衍射(XRD)测试方法对样品进行了表征. 粉末XRD结果表明, 该样品为单一立方相SnP2O7结构. 采用多种电化学方法研究了样品在中温范围内(323-523 K)质子和氧离子导电性. 样品在湿润氢气气氛中423 K下, 电导率达到最大值5.04×10-2 S·cm-1. 该样品在氢气气氛中的离子、质子、氧离子和电子迁移数(Nt)分别为0.95-1.00、0.84-0.96、0.04-0.10和0.00-0.05, 该样品在氢气气氛中几乎是一个纯离子导体, 其中, 质子导电为主, 同时具有一定的氧离子导电和少量的电子导电. 以该样品为燃料电池固体电解质, 组装氢气/空气燃料电池, 在398、423和448 K时最大输出功率密度分别为18.7、27.7和33.9 mW×cm-2.  相似文献   

19.
以SrCO3,Si3N4,Eu2O3为原料,在N2气氛下,采用自还原高温固相法制备了SrSi2O2N2:Eu2+荧光粉。研究了该荧光粉的物相结构、发光性能和晶体形貌,同时对比在不同气氛下合成的荧光粉。结果表明,在N2气氛与N2/H2气氛下分别合成的SrSi2O2N2:Eu2+荧光粉物相结构和光谱特性基本一致。显示出合成了主晶相SrSi2O2N2,但还含有少量未知的中间项。Eu2+浓度的变化不影响激发状态,而发射光谱的波长在Eu2+浓度为1mol%-20mol%之间,从530 nm的绿光红移至550 nm的黄绿光区域。同时,激发光谱覆盖的范围宽,均能有效的被UV或蓝光激发,这意味着该类荧光粉在白光LED方面有可能得到广泛的应用。  相似文献   

20.
A new series of layered perovskite photocatalysts, ABi2Ta2O9 (A=Ca, Sr, Ba), were synthesized by the conventional solid-state reaction method and the crystal structures were characterized by powder X-ray diffraction. The results showed that the structure of ABi2Ta2O9 (A=Ca, Sr) is orthorhombic, while that of BaBi2Ta2O9 is tetragonal. First-principles calculations of the electronic band structures and density of states (DOS) revealed that the conduction bands of these photocatalysts are mainly attributable to the Ta 5d+Bi 6p+O 2p orbitals, while their valence bands are composed of hybridization with O 2p+Ta 5d+Bi 6s orbitals. Photocatalytic activities for water splitting were investigated under UV light irradiation and indicated that these photocatalysts are highly active even without co-catalysts. The formation rate of H2 evolution from an aqueous methanol solution is about 2.26 mmol h-1 for the photocatalyst SrBi2Ta2O9, which is much higher than that of CaBi2Ta2O9 and BaBi2Ta2O9. The photocatalytic properties are discussed in close connection with the crystal structure and the electronic structure in details.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号