首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Asymptotic expansion for the out of plane displacement field around a crack propagating along the gradient in a functionally graded material is developed. The irregular behavior of one of the terms in the expansion at low crack speeds is further examined and a remedial solution, which is well behaved at low crack speeds, is proposed. The developed out of plane displacement field is used to estimate stress intensity factor from quasi-static finite element solution. The results indicate that inclusion of the proposed nonhomogeneity specific terms gives estimates of stress intensity factor, which are consistent with existing analytical predictions.  相似文献   

2.
The effects of the inhomogeneous material property variation on the mode-3 crack propagation characteristics have been analyzed. The spectral form of the elastodynamic boundary integral equations are derived for a functionally graded material, which is used as the numerical tool in our analysis. The material property gradient is assumed to vary unsymmetrically in the direction normal to the fracture plane. A parametric study has been performed by systematically varying the inhomogeneity length scale. In comparison with a homogeneous material, an unsymmetric functionally graded material offers lesser fracture resistance. The fracture resistance progressively decreases with increase in inhomogeneity, quantified by the increase in crack sliding displacement jumps, crack tip velocities and accelerations. The material property inhomogeneity affects only the transient crack propagation velocities, while the quasi-steady-state velocity remains unaltered.  相似文献   

3.
The effects of spatially varying the material properties on the mode-3 planar crack propagation characteristics are numerically investigated. The spectral scheme that is available for homogeneous materials is modified to account for the symmetrically varying material properties. Crack propagation in hardening, softening and unsymmetric type of functionally graded have been simulated. A parametric study was performed by systematically varying the material inhomogeneity length scale. Our study indicated that softening and unsymmetric graded materials reduce the resistance to fracture, while a hardening material offers higher fracture resistance with increase in inhomogeneity. Only the transient phase of crack propagation speed was affected by the material property variation, irrespective of whether the material was hardening, softening or an unsymmetric type. The crack always reached a quasi-steady-state velocity, which remained unaffected by the material property inhomogeneity.  相似文献   

4.
This paper considers the mode III crack problem in functionally graded piezoelectric materials. The mechanical and the electrical properties of the medium are considered for a class of functional forms for which the equilibrium equations have an analytical solution. The problem is solved by means of singular integral equation technique. Both a single crack and a series of collinear cracks are investigated. The results are plotted to show the effect of the material inhomogeneity on the stress and the electric displacement intensity factors.  相似文献   

5.
The differential equations governing transfer and stiffness matrices and acoustic impedance for a functionally graded generally anisotropic magneto-electro-elastic medium have been obtained. It is shown that the transfer matrix satisfies a linear 1st order matrix differential equation, while the stiffness matrix satisfies a nonlinear Riccati equation. For a thin nonhomogeneous layer, approximate solutions with different levels of accuracy have been formulated in the form of a transfer matrix using a geometrical integration in the form of a Magnus expansion. This integration method preserves qualitative features of the exact solution of the differential equation, in particular energy conservation. The wave propagation solution for a thick layer or a multilayered structure of inhomogeneous layers is obtained recursively from the thin layer solutions. Since the transfer matrix solution becomes computationally unstable with increase of frequency or layer thickness, we reformulate the solution in the form of a stable stiffness-matrix solution which is obtained from the relation of the stiffness matrices to the transfer matrices. Using an efficient recursive algorithm, the stiffness matrices of the thin nonhomogeneous layer are combined to obtain the total stiffness matrix for an arbitrary functionally graded multilayered system. It is shown that the round-off error for the stiffness-matrix recursive algorithm is higher than that for the transfer matrices. To optimize the recursive procedure, a computationally stable hybrid method is proposed which first starts the recursive computation with the transfer matrices and then, as the thickness increases, transits to the stiffness matrix recursive algorithm. Numerical results show this solution to be stable and efficient. As an application example, we calculate the surface wave velocity dispersion for a functionally graded coating on a semispace.  相似文献   

6.
A solution is provided for the elastodynamic problem of a crack at an arbitrary angle to the graded interfacial zone in bonded media under the action of antiplane shear impact. The interfacial zone is modeled by a nonhomogeneous interlayer with the spatially varying shear modulus and mass density in terms of power functions between the two dissimilar, homogeneous half-planes. Based on the use of Laplace and Fourier integral transforms and the coordinate transformations of basic field variables, formulation of the transient crack problem is reduced to solving a Cauchy-type singular integral equation in the Laplace transform domain. The crack-tip response in the physical domain is recovered via the inverse Laplace transform and the values of dynamic mode III stress intensity factors are obtained as a function of time. A comprehensive parametric study is then presented of the effects of crack obliquity on the overshoot behavior of the transient crack-tip response, by plotting the peak values of the dynamic stress intensity factors versus the crack orientation angle for various material and geometric combinations of the bonded system.  相似文献   

7.
In this paper a moving mode-III crack in functionally graded piezoelectric materials (FGPM) is studied. The crack surfaces are assumed to be permeable. The governing equations for FGPM are solved by means of Fourier cosine transform. The mathematical formulation for the permeable crack condition is derived as a set of dual integral equations, which, in turn, are reduced to a Fredholm integral equation of the second kind. The results obtained indicate that the stress intensity factor of moving crack in FGPM depends only on the mechanical loading. The gradient parameter of the FGPM and the moving velocity of the crack do have significant influence on the dynamic stress intensity factor.  相似文献   

8.
The thermal fracture of a bimaterial consisting of a homogeneous material and a functionally graded material (FGM) with a system of internal cracks and an interface crack is investigated. The bimaterial is subjected to a heat flux. The thermal properties of FGM are assumed to be continues functions of the thickness coordinate, while the elastic properties are constants. The method of the solution is based on the singular integral equations. For a special case where the interface crack is much larger than the internal cracks in the FGM the asymptotic analytical solution of the problem is obtained as series in a small parameter (the ratio between sizes of the internal and interface crack) and the thermal stress intensity factors (TSIFs) are derived as functions of geometry of the problem and material characteristics. A parametric analysis of the effects of the location and orientation of the cracks and of the inhomogeneity parameter of FGM’s thermal conductivity on the TSIFs is performed. The results are applicable to such kinds FGMs as ceramic/ceramic FGMs, e.g., TiC/SiC, MoSi2/Al2O3 and MoSi2/SiC, and also some ceramic/metal FGMs.  相似文献   

9.
Numerical analysis of the low-velocity impact damage of a layered composite beam with a functionally graded core is performed using the multiple-isoparametric cohesive volume finite element (MCVFE) scheme. A mixed-mode intrinsic cohesive zone model is used to simulate the spontaneous damage initiation and growth in this work. The inhomogeneous Young’s modulus variation is assumed to be symmetric about the neutral plane. Our parametric simulations showed that the energetics of damage is altered by the presence of a functionally graded core. The effect of including a functionally graded core is to advance the time of fracture initiation compared to a cross-ply (90°) core. The assumed symmetry and linear inhomogeneity leads to the energetics for the graded core to be similar to those observed for a 45° core ply-orientation.  相似文献   

10.
The dynamic response of a functionally graded orthotropic strip with an edge crack perpendicular to the boundaries is studied. The material properties are assumed to vary continuously along the thickness direction. Laplace and Fourier transforms are applied to reduce the problem to a singular integral equation. Numerical results are presented to illustrate the influences of parameters such as the nonhomogeneity constant and geometry parameters on the dynamic stress intensity factors (SIFs).  相似文献   

11.
Abstract

The dynamic behavior of an arc-shaped interfacial crack in an orthotropic functionally graded annular bi-material structure is investigated. In order for the analysis to be executable, the material properties are assumed to vary with the power function of the radial coordinates. By applying the separation variable method, the boundary value problem of the partial differential equation describing the fracture problem of this article can be transformed into a Cauchy kernel singular integral equation with the unknown jump of displacements across the crack surfaces. The obtained integral equation is solved numerically by Lobatto–Chebyshev collocation method to show the effects of the geometric and physical parameters upon the dynamic stress field near the crack tips.

Communicated by Kuang-Hua Chang.  相似文献   

12.
13.
This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs). First, a Laplace transform approach is used to handle the time variable. Then, a fundamental solution in Laplace space for FGMs is constructed. Next, a hybrid graded element is formulated based on the obtained fundamental solution and a frame field. As a result, the graded properties of FGMs are naturally reflected by using the fundamental solution to interpolate the intra-element field. Further, Stefest’s algorithm is employed to convert the results in Laplace space back into the time-space domain. Finally, the performance of the proposed method is assessed by several benchmark examples. The results demonstrate well the efficiency and accuracy of the proposed method.  相似文献   

14.
The problem of a penny-shaped interface crack between a functionally graded piezoelectric layer and a homogeneous piezoelectric layer is investigated. The surfaces of the composite structure are subjected to both mechanical and electrical loads. The crack surfaces are assumed to be electrically impermeable. Integral transform method is employed to reduce the problem to a Fredholm integral equation of the second kind. The stress intensity factor, electric displacement intensity factor and energy release rate are derived, some typical numerical results are plotted graphically. The effects of electrical loads, material nonhomogeneity and crack configuration on the fracture behaviors of the cracked composite structure are analyzed in detail.  相似文献   

15.
The scattering problem of anti-plane shear waves in a functionally graded material strip with an off-center crack is investigated by use of Schmidt method. The crack is vertically to the edge of the strip. By using the Fourier transform, the problem can be solved with the help of a pair of dual integral equations that the unknown variable is the jump of the displacement across the crack surfaces. To solve the dual integral equations, the jump of the displacement across the crack surfaces was expanded in a series of Jacobi polynomials. Numerical examples were provided to show the effects of the parameter describing the functionally graded materials, the position of the crack and the frequency of the incident waves upon the stress intensity factors of the crack.  相似文献   

16.
Summary The propagation of an anti-plane moving crack in a functionally graded piezoelectric strip (FGPS) is studied in this paper. The governing equations for the proposed analysis are solved using Fourier cosine transform. The mixed boundary value problems of the anti-plane moving crack, which is assumed to be either impermeable or permeable, are formulated as dual integral equations. By appropriate transformations, the dual integral equations are reduced to Fredholm integral equations of the second kind. For the impermeable crack, the stress intensity factor (SIF) of the crack in the FGPS depends on both the mechanical and electric loading, whereas, the SIF for the permeable crack depends only on the mechanical loading. The results obtained show that the gradient parameter of the FGPS and the velocity of the crack have significant influence on the dynamic SIF.Support from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. HKU 7081/00E) is acknowledged. Support from the National Natural Science Foundation of China (Project No. 10072041) is also acknowledged.  相似文献   

17.
Summary A finite crack propagating at constant speed in a functionally graded piezoelectric strip (FGPS) bonded to a homogeneous piezoelectric strip is considered. It is assumed that the electroelastic material properties of the FGPS vary exponentially across the thickness of the strip, and that the bimaterial strip is under combined anti-plane mechanical shear and in-plane electrical loads. The analysis is conducted for the electrically unified crack boundary condition, which includes both the traditional permeable and the impermeable ones. By using the Fourier transform, the problem is reduced to the solution of Fredholm integral equations of the second kind. Numerical results for the stress intensity factor and the crack sliding displacement are presented to show the influences of the crack propagation speed, electric loads, FGPS gradation, crack length, electromechanical coupling coefficient, properties of the bonded homogeneous piezoelectric strip and crack location.  相似文献   

18.
This paper presents an analysis of an elliptical crack that is perpendicular to a functionally graded interfacial zone between two fully bonded solids. The functionally graded interfacial zone is treated as a non-homogeneous solid layer with its elastic modulus varying in the thickness direction. A generalized Kelvin solution based boundary element method is employed for the calculation of the stress intensity factors associated with the three-dimensional crack problem. The elliptical crack surface is subject to either uniform normal traction or uniform shear traction. The stress intensity factors are examined by taking into account the effects of the non-homogeneity parameter and thickness of the functionally graded interfacial zone, as well as the crack distance to the zone. The SIF values are further incorporated into the S-criterion for prediction of crack growth. The paper presents the most possible direction and location of the elliptical crack growth under an inclined tensile (or compressive) load. The paper further presents results of the critical external loads that would cause the elliptical crack to grow at the most possible location and along the most possible direction. The paper also examines the effects of external load direction and material and geometrical parameters on the critical loads.  相似文献   

19.
弹性功能梯度材料板条中周期裂纹的反平面问题   总被引:1,自引:0,他引:1  
陈宜周 《力学学报》2004,36(4):501-506
讨论了弹性功能梯度材料板条中裂纹的反平面问题. 用Fourier 变换方法得到了一个基本解. 这个基本解表示了实轴上一点作用有点位错时引起的影响. 利 用此基本解可得单裂纹和周期裂纹问题的奇异积分方程. 在周期裂纹求解时, 远处裂纹对于中央裂纹的影响作了有效的近似处理. 最后, 给出了数值结果, 它表示了材料性质对于裂纹端应力强度因子的影响.  相似文献   

20.
This paper provides the solution to the problem of dissimilar, homogeneous semi-infinite strips bonded through a functionally graded interlayer and weakened by an embedded or edge interfacial crack. The bonded system is assumed to be under antiplane deformation, subjected to either traction-free or clamped boundary conditions along its bounding planes. Based on the Fourier integral transform, the problem is formulated in terms of a singular integral equation which has a simple Cauchy kernel for the embedded crack and a generalized Cauchy kernel for the edge crack. In the numerical results, the effects of geometric and material parameters of the bonded system on the crack-tip stress intensity factors are presented in order to quantify the interfacial fracture behavior in the presence of the graded interlayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号