首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three new sodium cobalt (nickel) selenite compounds, namely, Na2Co2(SeO3)3, Na2Co1.67Ni0.33(SeO3)3, and Na2Ni2(SeO3)3 have been hydro-/solvothermally synthesized in the mixed solvents of acetonitrile and water. Single-crystal X-ray diffraction analyses reveal that these isostructural compounds belong to the orthorhombic Cmcm space group and their structures feature three-dimensional open frameworks constructed by the two-dimensional layers of [MSeO3] pillared by the [SeO3]2− groups. The two different types of Na+ ions reside in the intersecting two-dimensional channels parallel to the a- and c-axes, respectively. Their thermal properties have been investigated via TGA-DSC. The magnetic measurements indicate the existence of the antiferromagnetic interactions in these compounds.  相似文献   

2.
Crystals of two new layered BaNaSc(BO3)2 (I) and BaNaY(BO3)2 (II) orthoborates are grown from the melt-solution by the spontaneous crystallization onto the platinum loop. Single crystal X-ray analysis showed that the compounds are isostructural with the space group R3¯, a=5.23944(12) and 5.3338(2) Å, and c=34.5919(11) and 35.8303(19) Å for I and II, respectively, Z=6. The distinctive feature of the structure is the close-packed composite anion-cation (Ba,Na)(BO3) layers. The layers are combined into the base building packages of two types: {M3+[Ba2+(BO3)3−]2}+ and {M3+[Na+(BO3)3−]2}, where M is Sc or Y. Neutral-charge two-package (four-layer) blocks are stacked by the rhombohedral principle into twelve layers of the cubic packing.  相似文献   

3.
Two new isostructural cobalt selenite halides Co5(SeO3)4Cl2 and Co5(SeO3)4Br2 have been synthesized. They crystallize in the triclinic system space group P−1 with the following lattice parameters for Co5(SeO3)4Cl2: a=6.4935(8) Å, b=7.7288(8) Å, c=7.7443(10) Å, α=66.051(11)°, β=73.610(11)°, γ=81.268(9)°, and Z=1. The crystal structures were solved from single-crystal X-ray data, R1=3.73 and 4.03 for Co5(SeO3)4Cl2 and Co5(SeO3)4Br2, respectively. The new compounds are isostructural to Ni5(SeO3)4Br2.Magnetic susceptibility measurements on oriented single-crystalline samples show anisotropic response in a broad temperature range. The anisotropic susceptibility is quantitatively interpreted within the zero-field splitting schemes for Co2+ and Ni2+ ions. Sharp low-temperature susceptibility features, at TN=18 and 20 K for Co5(SeO3)4Cl2 and Co5(SeO3)4Br2, respectively, are ascribed to antiferromagnetic ordering in a minority magnetic subsystem. In isostructural Ni5(SeO3)4Br2 magnetically ordered subsystem represents a majority fraction (TN=46 K). Nevertheless, anisotropic susceptibility of Ni5(SeO3)4Br2 is dominated at low temperatures by a minority fraction, subject to single-ion anisotropy effects and increasing population of Sz=0 (singlet) ground state of octahedrally coordinated Ni2+.  相似文献   

4.
Two new quaternary strontium selenium(IV) and tellurium(IV) oxychlorides, namely, Sr3(SeO3)(Se2O5)Cl2 and Sr4(Te3O8)Cl4, have been prepared by solid-state reaction. Sr3(SeO3)(Se2O5)Cl2 features a three-dimensional (3D) network structure constructed from strontium(II) interconnected by Cl, SeO32− as well as Se2O52− anions. The structure of Sr4(Te3O8)Cl4 features a 3D network in which the strontium tellurium oxide slabs are interconnected by bridging Cl anions. The diffuse reflectance spectrum measurements and results of the electronic band structure calculations indicate that both compounds are wide band-gap semiconductors.  相似文献   

5.
The rate of the reaction
has been investigated at 40–65°C with [HClO4] varying from 0.04 to 0.6 M (μ = 0.6 M, NaClO4). The observed rate law has the form: -d[Cr(NH3)5(NCO)2+]/dt = kobs[Cr(NH3)5(NCO)2+] where kobs = a[H+]2{1 + b[H+]2} and ?1 at 55.0°C, a = 0.36 M?1 s?2 and b = 6.9 × 10?3 M?1 s?1. The rate of loss of Cr(NH3)5(NCO)2+ increases with increasing acidity to a limiting value (at [H+] ~ 0.5 M) but the yield of Cr(NH3)63+ decreases with increasing [H+] and increases with increasing temperature. In the kinetic studies the maximum yield of Cr(NH3)63+ was 35% but a synthetic procedure has been developed to give a 60% yield.  相似文献   

6.
7.
The new nickel selenite chloride, Ni5(SeO3)4Cl2, was obtained by high-temperature solid state reaction of NiCl2, Ni2O3 and SeO2 in a 1:2:4 molar ratio at 700 °C in an evacuated quartz tube. Its structure was established by single-crystal X-ray diffraction. Ni5(SeO3)4Cl2 crystallizes in the triclinic system, space group P-1 (No. 2) with cell parameters of a=8.076(2), b=9.288(2), c=9.376(2) Å, α=101.97(3), β=105.60(3), γ=91.83(3)° and Z=2. All nickel(II) ions in Ni5(SeO3)4Cl2 are octahedrally coordinated by selenite oxygens or/and chloride anions (([Ni(1)O5Cl], [Ni(2)O4Cl2], [Ni(3)O5Cl], [Ni(4)O6] and [Ni(5)O4Cl]). The structure of the title compound features a condensed three-dimensional (3D) network built by Ni(II) ions interconnected by SeO32− anions as well as Cl anions. Magnetic property measurements show strong antiferromagnetic interaction between nickel(II) ions.  相似文献   

8.
Ag4(Mo2O5)(SeO4)2(SeO3) has been synthesized by reacting AgNO3, MoO3, and selenic acid under mild hydrothermal conditions. The structure of this compound consists of cis-MoO22+ molybdenyl units that are bridged to neighboring molybdenyl moieties by selenate anions and by a bridging oxo anion. These dimeric units are joined by selenite anions to yield zigzag one-dimensional chains that extended down the c-axis. Individual chains are polar with the C2 distortion of the Mo(VI) octahedra aligning on one side of each chain. However, the overall structure is centrosymmetric because neighboring chains have opposite alignment of the C2 distortion. Upon heating Ag4(Mo2O5)(SeO4)2(SeO3) looses SeO2 in two distinct steps to yield Ag2MoO4. Crystallographic data: (193 K; MoKα, λ=0.71073 Å): orthorhombic, space group Pbcm, a=5.6557(3), b=15.8904(7), c=15.7938(7) Å, V=1419.41(12), Z=4, R(F)=2.72% for 121 parameters with 1829 reflections with I>2σ(I). Ag2(MoO3)3SeO3 was synthesized by reacting AgNO3 with MoO3, SeO2, and HF under hydrothermal conditions. The structure of Ag2(MoO3)3SeO3 consists of three crystallographically unique Mo(VI) centers that are in 2+2+2 coordination environments with two long, two intermediate, and two short bonds. These MoO6 units are connected to form a molybdenyl ribbon that extends along the c-axis. These ribbons are further connected together through tridentate selenite anions to form two-dimensional layers in the [bc] plane. Crystallographic data: (193 K; MoKα, λ=0.71073 Å): monoclinic, space group P21/n, a=7.7034(5), b=11.1485(8), c=12.7500(9) Å, β=105.018(1) V=1002.7(2), Z=4, R(F)=3.45% for 164 parameters with 2454 reflections with I>2σ(I). Ag2(MoO3)3SeO3 decomposes to Ag2Mo3O10 on heating above 550 °C.  相似文献   

9.
Two new barium zinc selenite and tellurite, namely, BaZn(SeO3)2 and BaZn(TeO3)Cl2, have been synthesized by the solid state reaction. The structure of BaZn(SeO3)2 features double chains of [Zn(SeO3)2]2− anions composed of four- and eight-member rings which are alternatively along a-axis. The double chains of [Zn2(TeO3)2Cl3]3− anions in BaZn(TeO3)Cl2 are formed by Zn3Te3 rings in which each tellurite group connects with three ZnO3Cl tetrahedra. BaZn(SeO3)2 and BaZn(TeO3)Cl2 are wide bandgap semiconductors based on optical diffuse reflectance spectrum measurements.  相似文献   

10.
Three new thiogermanates (enH)4Ge2S6 (1) and [M(en)3]2Ge2S6 (M=Mn (2), Ni (3); en=ethylenediamine) were synthesized using GeO2 and S8 as starting materials in molar ratio of 1:0.5 under solvothermal conditions. These compounds suggest that the dimeric [Ge2S6]4− anion is likely to be the main germanium-containing species in en system and it also might be preferred as counter anions by the transition metal complex cations in crystallization. The cations of [Mn(en)3]2+ and [Ni(en)3]2+ are even better mineralizers than the protonated amine of [enH]+. The crystal systems of [Ge2S6]4− compounds are related to entities of cations and intermolecular reactions between cations and [Ge2S6]4− anions. The compounds remove ethylenediamine and H2S molecules in multi steps when being heated under nitrogen stream.  相似文献   

11.
The reactions of [Fe3(CO)12] or [Ru3(CO)12] with RNC (R=Ph, C6H4OMe-p or CH2SO2C6H4Me-p) have been investigated using electrospray mass spectrometry. Species arising from substitution of up to six ligands were detected for [Fe3(CO)12], but the higher-substituted compounds were too unstable to be isolated. The crystal structure of [Fe3(CO)10(CNPh)2] was determined at 150 and 298 K to show that both isonitrile ligands were trans to each other on the same Fe atom. For [Ru3(CO)12] substitution of up to three COs was found, together with the formation of higher-nuclearity clusters. [Ru4(CO)11(CNPh)3] was structurally characterised and has a spiked-triangular Ru4 core with two of the CNPh ligands coordinated in an unusual μ32 mode.  相似文献   

12.
The potential insertion-electrode compounds Na1.2[V3O8] (NaV) and Na0.7Li0.7[V3O8] (NaLiV) were synthesized from mixtures of Na2CO3, Li2CO3 and V2O5, which were melted at 750° and subsequently cooled to room temperature. The structures of NaV and LiV contain sheets of polymerized (VOn) polyhedra, which are topologically identical to the sheet of polymerized polyhedra in Li1.2[V3O8] (LiV). Vanadium occurs in three different coordination environments: [2+3] V(1), [2+2+2] V(2) and [1+4+1] V(3). Calculated bond-valence sums indicate that V4+ occurs preferentially at the V(3) site, which agrees with the general observation that [6]-coordinated V4+ prefers [1+4+1]-rather than [2+2+2]-coordination. The M-cations Na and Li occur at three distinct sites, M(1), M(2) and M(3) between the vanadate sheets. The M(1)-site is fully occupied and has octahedral coordination. The M(2) sites are partly occupied in NaV and NaLiV, in which they occur in [4]- and [6]-coordination, respectively. Li partly occupies the M(3) site in NaLiV, in which it occurs in [3]-coordination. The M(2) and M(3) sites in NaLiV occur closer to the vanadate sheets than the M(2) sites in NaV and LiV. The shift in these cation positions is a result of the larger distance between the vanadate sheets in NaLiV than in LiV, which forces interstitial Li to move toward one of the vanadate sheets to satisfy its coordination requirements. Bond-valence maps for the interstitial cations Na and Li are presented for NaV, NaLiV and LiV. These maps are used to determine other potential cation positions in the interlayer and to map the regions of the structure where the Na and Li have their bond-valence requirements satisfied. These regions are potential pathways for Na and Li diffusion in these structures, and are used to explain chemical diffusion properties of Na and Li in the Na-Li-[V3O8] compounds.  相似文献   

13.
Two novel lanthanum(III) silicate tellurites, namely, La4(Si5.2Ge2.8O18)(TeO3)4 and La2(Si6O13)(TeO3)2, have been synthesized by the solid state reactions and their structures determined by single crystal X-ray diffraction. The structure of La4(Si5.2Ge2.8O18)(TeO3)4 features a three-dimensional (3D) network composed of the [(Ge2.82Si5.18)O18]4− tetrahedral layers and the [La4(TeO3)4]4+ layers that alternate along the b-axis. The germanate-silicate layer consists of corner-sharing XO4 (X=Si/Ge) tetrahedra, forming four- and six-member rings. The structure of La2(Si6O13)(TeO3)2 is a 3D network composed of the [Si6O13]2− double layers and the [La2(TeO3)2]2+ layers that alternate along the a-axis. The [Si6O13]2− double layer is built by corner-sharing silicate tetrahedra, forming four-, five- and eight-member rings. The TeO32− anions in both compounds are only involved in the coordination with La3+ ions to form a lanthanum(III) tellurite layer. La4(Si5.2Ge2.8O18)(TeO3)4 is a wide band-gap semiconductor.  相似文献   

14.
Single crystals of the strontium phosphate orthoborate metaborate, Sr10[(PO4)5.5(BO4)0.5](BO2), were grown from the melt and investigated by X-ray diffraction (space group , No. 147; a=9.7973(8) Å, c=7.3056(8) Å, V=607.29(10) Å3, Z=1). The crystal structure is closely related to apatite and contains linear metaborate groups, [BO2] (point group D∞h, B-O=1.284(11) Å) taking positions within the channels running along the three-fold inversion axis. Strontium sites are found to be fully occupied while [PO4]3− tetrahedra are partially replaced by [BO4]5− groups.  相似文献   

15.
The hydrothermal syntheses, single crystal structures, and some properties of Ba2MnIIMn2III(SeO3)6 and PbFe2(SeO3)4 are reported. These related phases contain three-dimensional frameworks of vertex (FeO6) and vertex/edge linked (MnO6) octahedra and SeO3 pyramids. In each case, the MO6/SeO3 framework encloses two types of 8 ring channels, one of which encapsulates the extra-framework cations and one of which provides space for the SeIV lone pairs. Crystal data: Ba2Mn3(SeO3)6, Mr=1201.22, monoclinic, P21/c (No. 14), a=5.4717 (3) Å, b=9.0636 (4) Å, c=17.6586 (9) Å, β=94.519 (1)°, V=873.03 (8) Å3, Z=2, R(F)=0.031, wR(F2)=0.070; PbFe2(SeO3)4, Mr=826.73, triclinic, (No. 2), a=5.2318 (5) Å, b=6.7925 (6) Å, c=7.6445 (7) Å, α=94.300 (2)°, β=90.613 (2)°, γ=95.224 (2)°, V=269.73 (4) Å3, Z=1, R(F)=0.051, wR(F2)=0.131.  相似文献   

16.
Two new hydrated borates, Zn8[(BO3)3O2(OH)3] and Pb[B5O8(OH)]·1.5H2O, have been prepared by hydrothermal reactions at 170 °C. Single-crystal X-ray structural analyses showed that Zn8[(BO3)3O2(OH)3] crystallizes in a non-centrosymmetric space group R32 with a=8.006(2) Å, c=17.751(2) Å, Z=3 and Pb[B5O8(OH)]·1.5H2O in a triclinic space group P1¯ with a=6.656(2) Å, b=6.714(2) Å, c=10.701(2) Å, α=99.07(2)°, β=93.67(2)°, γ=118.87(1)°, Z=2. Zn8[(BO3)3O2(OH)3] represents a new structure type in which Zn-centered tetrahedra are connected via common vertices leading to helical ribbons 1[Zn8O15(OH)3]17− that pack side by side and are further condensed through sharing oxygen atoms to form a three-dimensional 3[Zn8O11(OH)3]9− framework. The boron atoms are incorporated into the channels in the framework to complete the final structure. Pb[B5O8(OH)]·1.5H2O is a layered compound containing double ring [B5O8(OH)]2− building units that share exocyclic oxygen atoms to form a two-dimensional layer. Symmetry-center-related layers are stacked along the c-axis and held together by interlayer Pb2+ ions and water molecules via electrostatic and hydrogen bonding interactions. The IR spectra further confirmed the existence of both triangular BO3 and OH groups in Zn8[(BO3)3O2(OH)3], and BO3, BO4, OH groups as well as guest water molecules in Pb[B5O8(OH)]·1.5H2O.  相似文献   

17.
By replacing Mn in YCa3(MnO)3(BO3)4 with trivalent Al and Ga, two new borates with the compositions of YCa3(MO)3(BO3)4 (M=Al, Ga) were prepared by solid-state reaction. Structure refinements from X-ray powder diffraction data revealed that both of them are isostructural to gaudefroyite with a hexagonal space group P63/m. Cell parameters of a=10.38775(13)Å, c=5.69198(10)Å for the Al-containing compound and a=10.5167(3)Å, c=5.8146(2)Å for the Ga analog were obtained from the refinements. The structure is constituted of AlO6 or GaO6 octahedral chains interconnected by BO3 groups in the ab plane to form a Kagomé-type lattice, leaving trigonal and apatite-like tunnels. It is found that most rare-earth and Cr, Mn ions can be substituted into the Y3+ and M3+ sites, respectively, and the preference of rare-earth ions to locate in the trigonal tunnel is correlated to the sizes of the M3+ ions.  相似文献   

18.
Two new thallium iodates have been synthesized, Tl(IO3)3 and Tl4(IO3)6 [Tl+3Tl3+(IO3)6], and characterized by single-crystal X-ray diffraction. Both materials were synthesized as phase-pure compounds through hydrothermal techniques using Tl2CO3 and HIO3 as reagents. The materials crystallize in space groups R-3 (Tl(IO3)3) and P-1 (Tl4(IO3)6). Although lone-pairs are observed for both I5+ and Tl+, electronic structure calculations indicate the lone-pair on I5+ is stereo-active, whereas the lone-pair on Tl+ is inert.  相似文献   

19.
Three new hydrated scandium selenites have been hydrothermally synthesized as single crystals and structurally and physically characterized. Sc2(SeO3)3·H2O crystallizes as a new structure type containing novel ScO7 pentagonal bipyramidal and ScO6+1 capped octahedral coordination polyhedra. Sc2(SeO3)3·3H2O contains typical ScO6 octahedra and is isostructural with its M2(SeO3)3·3H2O (M=Al, Cr, Fe, Ga) congeners. CsSc3(SeO3)4(HSeO3)2·2H2O contains near-regular ScO6 octahedra and has essentially the same structure as its indium-containing analogue. All three phases contain the expected pyramidal [SeO3]2- selenite groups. Crystal data: Sc2(SeO3)3·3H2O, Mr=524.85, trigonal, R3c (No. 161), , , , Z=6, R(F)=0.018, wR(F2)=0.036; Sc2(SeO3)3·H2O, Mr=488.82, orthorhombic, P212121 (No. 19), , , , , Z=4, R(F)=0.051, wR(F2)=0.086; CsSc3(SeO3)4(HSeO3)2·2H2O, Mr=1067.60, orthorhombic, Pnma (No. 62), , , , , Z=4, R(F)=0.035, wR(F2)=0.070.  相似文献   

20.
Neutron structure determinations have been made of Tutton's salts, X2[M(H2O)6] (YO4)2, where Y = Se, X = K+, M = Cu2+; Y = S, X = K+, M = Ni2+, Cu2+, Zn2+; X = Rb+, Cs+, M = Cu2+. This work has shown that there are extensive hydrogen networks with almost linear hydrogen bonds from [M(H2O)6]2+ to (YO4)2?. The (H … O) distance increases in the Cu2+ series for X = K+ to Cs+ but there is no difference for the potassium copper salts when Y = Se or S. Three different distorted [M(H2O)6]2+ octahedra were found in the series (orthorhombic, tetragonal with two long and four short, or four long and two short bonds). The interatomic distances from X+ to the neighboring O in a distorted XO8+ dodecahedron increases with increased cation size, implying that the X+ polyhedron is maintaining its shape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号