首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of uniform, monodispersed Gd(OH)3:Eu3+ nanospheres less than 100 nm were successfully synthesized with iron ions as catalyst and DMF as solvent under the solvothermal condition. Cetyltrimethyl ammonium bromide (CTAB) and Polyvinylpyrrolidone (PVP) were performed as co-surfactant during this facile procedure should be changed as A series of uniform, monodisperse Gd(OH)3:Eu3+ nanospheres less than 100 nm in diameter were successfully synthesized with solvothermal method. Iron ion was used as catalyst and Dimethylformamide (DMF) as solvent, Cetyltrimethyl Ammonium Bromide (CTAB) and Polyvinylpyrrolidone (PVP) were performed as surfactants. Further calcination process was applied to prepare Gd2O3:Eu3+ nanoshpheres during this facile procedure.  相似文献   

2.
Nickel was successfully introduced into the Gd5Sb3 and Gd5Bi3 binaries to yield the Gd5Ni0.96(1)Sb2.04(1) and Gd5Ni0.71(1)Bi2.29(1) phases. Both Ni-substituted compounds adopt the orthorhombic Yb5Sb3-type structure. While the Gd5Ni0.71Bi2.29 phase is thermodynamically stable at 800 °C and decomposes at lower temperatures upon annealing, it can be easily quenched to room temperature by rapid cooling from 800 °C. The Gd5Ni0.96Sb2.04 phase is found to be thermodynamically stable till room temperature. Through annealing at different temperatures, Gd5Bi3 was proven to undergo the Mn5Si3-type (LT)↔Yb5Sb3-type (HT) transformation reversibly, whereas Gd5Sb3 was found to adopt only the hexagonal Mn5Si3-type structure. Orthorhombic Gd5Ni0.96Sb2.04 and Gd5Ni0.71Bi2.29 and low-temperature hexagonal Gd5Bi3 order ferromagnetically at 115, 162 and 112 K, respectively. In Gd5Bi3, the ferromagnetic ordering is followed by spin reorientation below 64 K. Magnetocaloric effect in terms of ΔS was evaluated from the magnetization data and found to reach the maximum values of −7.7 J/kgK for Gd5Ni0.96Sb2.04 and −5.6 J/kgK for Gd5Ni0.71Bi2.29 around their Curie temperatures.  相似文献   

3.
Electron spin resonance spectra of Gd3+ in diluted solid solutions of Gd2O3 in CeO2 have been studied at room temperature for Gd concentrations between 0.01 and 1.00 mol%. While in the case of Mn2+:CeO2 samples, both the linewidth and the line intensity go through a maximum between 0.2 and 0.4% Mn and then start to decrease, in the case of Gd3+:CeO2 samples the linewidth and the line intensity increase monotonically with the dopant concentration. This as taken as evidence that in Gd2O3-CeO2 diluted solid solutions there are no clustering effects similar to the ones observed in Mn:CeO2 solid solutions. It is not clear why clustering effects are present in Mn:CeO2 solid solutions and not in Gd:CeO2 solid solutions; however, it seems reasonable to assume that this is due to the fact that the ionic radius of Mn2+ (81 pm) is about 25% smaller that that of Gd3+ (107.8 pm). In any case, the fact that Gd:CeO2 solid solutions do not exhibit clustering effects means that ESR linewidth data can be used to estimate the concentration of Gd in CeO2 samples, as it is possible to do in several solid solutions of paramagnetic ions in ceramic materials. The results also suggest that the range of the exchange interaction between Gd3+ ions in CeO2 is about 0.89 nm.  相似文献   

4.
The crystal structure of Ca12Al14O32Cl2 was determined from laboratory X-ray powder diffraction data (CuKα1) using the Rietveld method, with the anisotropic displacement parameters being assigned for all atoms. The crystal structure is cubic (space group , Z=2) with lattice dimensions a=1.200950(5) nm and V=1.73211(1) nm3. The reliability indices calculated from the Rietveld method were Rwp=8.48% (S=1.21), Rp=6.05%, RB=1.27% and RF=1.01%. The validity of the structural model was verified by the three-dimensional electron density distribution, the structural bias of which was reduced as much as possible using the maximum-entropy methods-based pattern fitting (MPF). The reliability indices calculated from the MPF were RB=0.75% and RF=0.56%. In the structural model there are one Ca site, two Al sites, two O sites and one Cl site. This compound is isomorphous with Ca12Al10.6Si3.4O32Cl5.4. Europium-doped sample Ca12Al14O32Cl2:Eu2+ was prepared and the photoluminescence properties were presented. The excitation spectrum consisted of two wide bands, which were located at about 268 and 324 nm. The emission spectrum, when excited at 324 nm, resulted in indigo light with a peak at about 442 nm.  相似文献   

5.
The structure of Gd2Zr2O7 pyrochlore over the temperature range 4-300 K has been refined from powder neutron diffraction data. The sample was enriched in 160Gd to avoid the high neutron absorption of naturally occurring Gd. The diffraction pattern showed well resolved superlattice reflections indicative of the pyrochlore structure and no evidence is found for anion-disorder from the structural refinements.  相似文献   

6.
The citrate-nitrate gel combustion route was used to prepare SrFe2O4(s), Sr2Fe2O5(s) and Sr3Fe2O6(s) powders and the compounds were characterized by X-ray diffraction analysis. Different solid-state electrochemical cells were used for the measurement of emf as a function of temperature from 970 to 1151 K. The standard molar Gibbs energies of formation of these ternary oxides were calculated as a function of temperature from the emf data and are represented as (SrFe2O4, s, T)/kJ mol−1 (±1.7)=−1494.8+0.3754 (T/K) (970?T/K?1151). (Sr2Fe2O5, s, T)/kJ mol−1 (±3.0)=−2119.3+0.4461 (T/K) (970?T/K?1149). (Sr3Fe2O6, s, T)/kJ mol−1 (±7.3)=−2719.8+0.4974 (T/K) (969?T/K?1150).Standard molar heat capacities of these ternary oxides were determined from 310 to 820 K using a heat flux type differential scanning calorimeter (DSC). Based on second law analysis and using the thermodynamic database FactSage software, thermodynamic functions such as ΔfH°(298.15 K), S°(298.15 K) S°(T), Cp°(T), H°(T), {H°(T)-H°(298.15 K)}, G°(T), free energy function (fef), ΔfH°(T) and ΔfG°(T) for these ternary oxides were also calculated from 298 to 1000 K.  相似文献   

7.
Li4Ti5O12 (LTO)/carbon nanotubes (CNTs) composite material is synthesized based on a solid-state method by sand-milling, spray-drying and calcining at 850 ℃ under N2 flow. The LTO/CNTs samples with 1 wt% and 3 wt% weight ratio of CNTs addition and the pristine LTO sample are prepared. The rate performance and the thermal stability of these samples are investigated based on LiMn2O4 (LMO)/LTO full-cell. The results show that theweight ratio of CNTs addition has distinct effect on LTO performances. The composite materials of LTO composited CNTs have better performance at high-rate due to the intercalation enhancement by conductive network of CNTs. At second, the overcharging temperature response of the cell's surface with 1 wt% CNTs addition is the lowest. The particle size distribution is measured and the most uniform particles are obtained with 1 wt% CNTs addition. This trend could explain that the mediumquantity of CNTs is optimal to improve the heat and mass transfer and prevent the problems of crystallite growing interference and aggregation during the calcination process.  相似文献   

8.
The crystal structures of NaK2B9O15 (, , , β=94.080(1)°, Rp=0.047, Rwp=0.059, RB=0.026), Na(Na.17K.83)2B9O15 (, , , β=94.228(2)°, Rp=0.053, Rwp=0.068, RB=0.026), and (Na.80K.20)K2B9O15 (, , , β=94.071(1)°, Z=4, Rp=0.041, Rwp=0.052, RB=0.023) were refined in the monoclinic space groups P21/c(Z=4) using X-ray powder diffraction data and the Rietveld method. These nonaborates are isostructural to K3B9O15. Their crystal structure consists of a three-dimensional open framework built up from three crystallographically independent triborate groups. The alkali metal cations are located on three different sites in the voids of the framework. High-temperature X-ray diffraction studies show that NaK2B9O15 decomposes at about 700 °C in accordance with the peritectic reaction NaK2B9O15↔K5B19O31+liquid. The thermal expansion of NaK2B9O15 and Na(Na.17K.83)2B9O15 is highly anisotropic. A similarity of the thermal and compositional (Na-K substitution) deformations of NaK2B9O15 is revealed: heating of NaK2B9O15 by 1 °C leads to the same deformations of the crystal structure as increasing the amount of K atoms in (Na1−xKx)3B9O15 by 0.04 at% K.  相似文献   

9.
The structural disorder in Ba0.6Sr0.4Al2O4 (space group P6322) was investigated by X-ray powder diffraction and selected-area electron diffraction (SAED). The initial structural model was determined using direct methods, and it was further modified by the combined use of Rietveld method and maximum-entropy method (MEM). MEM-based pattern fitting method was subsequently applied, resulting in the final reliability indices of Rwp=9.61%, Rp=6.96%, RB=1.40% and S=1.25. The electron density distribution was satisfactorily expressed by the split-atom model in which the strontium/barium and oxygen atoms were split to occupy the lower symmetry sites. The diffuse scattering in SAED was mainly attributable to the positional disorder of oxygen atoms.  相似文献   

10.
LnCl3 (Ln=Nd, Gd) reacts with C5H9C5H4Na (or K2C8H8) in THF (C5H9C5H4 = cyclopentylcyclopentadienyl) in the ratio of 1 : to give (C5H9C5H4)LnCl2(THF)n (orC8H8)LnCl2(THF)n], which further reacts with K2C8H8 (or C5H9C5H4Na) in THF to form the litle complexes. If Ln=Nd the complex (C8H8)Nd(C5H9C5H4)(THF)2 (a) was obtained: when Ln=Gd the 1 : 1 complex [(C8H8)Gd(C%H9)(THF)][(C8H8)Gd(C5H9H4)(THF)2] (b) was obtained in crystalline form.

The crystal structure analysis shows that in (C8H8)Ln(C5H9C5H4)(THF)2 (Ln=Nd or Gd), the Cyclopentylcyclopentadieny (η5), cyclooctatetraenyl (η8) and two oxygen atoms from THF are coordinated to Nd3+ (or Gd3+) with coordination number 10.

The centroid of the cyclopentadienyl ring (Cp′) in C5H9C5H4 group, cyclooctatetraenyl centroid (COTL) and two oxygens (THF) form a twisted tetrahedron around Nd3+ (or Gd3+). In (C8H8)Gd(C5H9C5H4)(THF), the cyclopentyl-cyclopentadienyl (η5), cyclooctatetraenyl (η8) and one oxygen atom are coordinated to Gd3+ with the coordination number of 9 and Cp′, COT and oxygen atom form a triangular plane around Gd3+, which is almost in the plane (dev. -0.0144 Å).  相似文献   


11.
用3种方法合成Y3Al5O12:RE^3+(RE=Eu,Dy)发光粉的对比研究   总被引:3,自引:1,他引:3  
以金属硝酸盐为反应原料,分别采用柠檬酸-凝胶法、共沉淀法和固相法制备了YAG和YAG:RE^3 (RE=Eu,Dy)(1%,摩尔分数)发光粉,并通过XRD,TG-DTA和发光光谱对样品进行了表征。柠檬酸-凝胶法、共沉淀法和固相法制备的YAG和YAG:Eu的晶相形成温度分别是800和900℃。Eu^3 在非晶态和晶态YAG中其激发和发射光谱有明显差异,在一定温度范围内,发光强度随烧结温度的升高而增强。由于碳杂质的存在,900和1000℃下柠檬酸-凝胶法制备样品的发射强度较其他两种方法低。  相似文献   

12.
Ag4(Mo2O5)(SeO4)2(SeO3) has been synthesized by reacting AgNO3, MoO3, and selenic acid under mild hydrothermal conditions. The structure of this compound consists of cis-MoO22+ molybdenyl units that are bridged to neighboring molybdenyl moieties by selenate anions and by a bridging oxo anion. These dimeric units are joined by selenite anions to yield zigzag one-dimensional chains that extended down the c-axis. Individual chains are polar with the C2 distortion of the Mo(VI) octahedra aligning on one side of each chain. However, the overall structure is centrosymmetric because neighboring chains have opposite alignment of the C2 distortion. Upon heating Ag4(Mo2O5)(SeO4)2(SeO3) looses SeO2 in two distinct steps to yield Ag2MoO4. Crystallographic data: (193 K; MoKα, λ=0.71073 Å): orthorhombic, space group Pbcm, a=5.6557(3), b=15.8904(7), c=15.7938(7) Å, V=1419.41(12), Z=4, R(F)=2.72% for 121 parameters with 1829 reflections with I>2σ(I). Ag2(MoO3)3SeO3 was synthesized by reacting AgNO3 with MoO3, SeO2, and HF under hydrothermal conditions. The structure of Ag2(MoO3)3SeO3 consists of three crystallographically unique Mo(VI) centers that are in 2+2+2 coordination environments with two long, two intermediate, and two short bonds. These MoO6 units are connected to form a molybdenyl ribbon that extends along the c-axis. These ribbons are further connected together through tridentate selenite anions to form two-dimensional layers in the [bc] plane. Crystallographic data: (193 K; MoKα, λ=0.71073 Å): monoclinic, space group P21/n, a=7.7034(5), b=11.1485(8), c=12.7500(9) Å, β=105.018(1) V=1002.7(2), Z=4, R(F)=3.45% for 164 parameters with 2454 reflections with I>2σ(I). Ag2(MoO3)3SeO3 decomposes to Ag2Mo3O10 on heating above 550 °C.  相似文献   

13.
The Gd3Fe5O12 nanocrystalline Gadolinium Iron Garnet (GdIG) obtained from a sintered block was milled in a high energy ball mill. We measured the magnetization at 5 K under applied fields up to 12 T. We report here our study of approach to saturation magnetization. The results have been interpreted within the framework of random anisotropy model. From an analysis of the approach to saturation magnetization some fundamental parameters have been extracted. We have determined the anisotropy field Hr and the local magnetic anisotropy constant KL. In addition, first-principles spin-density functional calculations, using the Full potential Linear Augmented Plane Waves (FLAPW) method are performed to investigate electronic and magnetic structures. All computed parameters are discussed and compared to available experimental data.  相似文献   

14.
Gd4Co2Mg3 (Nd4Co2Mg3 type; space group P2/m; a=754.0(4), b=374.1(1), c=822.5(3) pm and β=109.65(4)° as unit cell parameters) was synthesized from the elements by induction melting in a sealed tantalum tube. Its investigation by electrical resistivity, magnetization and specific heat measurements reveals an antiferromagnetic ordering at TN=75(1) K. Moreover, this ternary compound presents a metamagnetic transition at low critical magnetic field (Hcr=0.93(2) T at 6 K) and exhibits a magnetic moment of 6.3(1) μB per Gd-atom at 6 K and H=4.6 T. Due to this transition the compound shows a moderate magnetocaloric effect; at 77 K the maximum of the magnetic entropy change is ΔSM=−10.3(2) J/kg K for a field change of 0-4.6 T. This effect is compared to that reported previously for compounds exhibiting a magnetic transition in the same temperature range.  相似文献   

15.
The Ni3(PO4)2 phosphate was synthesized by the ceramic method in air atmosphere. The crystal structure consists of a three-dimensional skeleton constructed from Ni3O14 edge-sharing octahedra, which are interconnected by (PO4)3− oxoanions with tetrahedral geometry. The magnetic behavior was studied on powdered sample by using susceptibility, specific heat and neutron diffraction data. The nickel(II) orthophosphate exhibits a three-dimensional magnetic ordering at approximately 17.1 K. However, its complex crystal structure hampers any parametrization of the J-exchange parameter. The specific heat measurements of Ni3(PO4)2 exhibit a three-dimensional magnetic ordering (λ-type) peak at 17.1 K. Measurements above TN suggest the presence of a small short-range order in this phase. The total magnetic entropy was found to be 28.1 KJ/mol at 50 K. The magnetic structure of the nickel(II) phosphate exhibits ferromagnetic interactions inside the Ni3O14 trimers which are antiferromagnetically coupled between them, giving rise to a purely antiferromagnetic structure.  相似文献   

16.
The quantum efficiency and luminescence properties of double activated terbium aluminum garnet samples were investigated in the present study. A mathematical procedure and PL measurement system are developed for express analysis of quantum efficiency of luminescent materials. The energy-level diagram was proposed to explain the luminescence mechanism. Application of TAG:Ce,Eu with improved CIE and CRI in LED device is demonstrated.  相似文献   

17.
Two pure strontium borates SrB2O4·4H2O and SrB2O4 have been synthesized and characterized by means of chemical analysis and XRD, FT-IR, DTA-TG techniques. The molar enthalpies of solution of SrB2O4·4H2O and SrB2O4 in 1 mol dm−3 HCl(aq) were measured to be −(9.92 ± 0.20) kJ mol−1 and −(81.27 ± 0.30) kJ mol−1, respectively. The molar enthalpy of solution of Sr(OH)2·8H2O in (HCl + H3BO3)(aq) were determined to be −(51.69 ± 0.15) kJ mol−1. With the use of the enthalpy of solution of H3BO3 in 1 mol dm−3 HCl(aq), and the standard molar enthalpies of formation for Sr(OH)2·8H2O(s), H3BO3(s), and H2O(l), the standard molar enthalpies of formation of −(3253.1 ± 1.7) kJ mol−1 for SrB2O4·4H2O, and of −(2038.4 ± 1.7) kJ mol−1 for SrB2O4 were obtained.  相似文献   

18.
Gd5CoSi2 was prepared by annealing at 1003 K. Its investigation by the X-ray powder diffraction shows that the ternary silicide crystallizes in a tetragonal structure deriving from the Cr5B3-type (I4/mcm space group; a=7.5799(4) and c=13.5091(12) Å as unit cell parameters). The Rietveld refinement shows a mixed occupancy on the (8h) site between Si and Co atoms. Magnetization and specific heat measurements performed on Gd5CoSi2 reveal a ferromagnetic behaviour below TC=168 K. This magnetic ordering is associated to an interesting magnetocaloric effect; the adiabatic temperature change ΔTad is about 3.1 and 5.9 K, respectively, for a magnetic field change of 2 and 4.6 T.  相似文献   

19.
Manganites NdM3Sr3Mn4O12 and NdM3Ba3Mn4O12 (M = Li, Na, K) were synthesized by a ceramic method from the corresponding oxides and carbonates. The X-ray diffraction analysis showed that all the compounds crystallized in the tetragonal crystal system with the following lattice parameters: NdLi3Sr3Mn4O12: a = 10.88 ?, c = 9.52 ?, V o = 1126.9 ?3, Z = 4, ρX = 4.95 g/cm3, ρpycn = 4.87 ± 0.05 g/cm3; NdNa3Sr3Mn4O12: a = 10.73 ?, c = 10.66 ?, V o = 1227.3 ?3, Z = 4, ρX = 4.80 g/cm3, ρpycn = 4.73 ± 0.07 g/cm3; NdK3Sr3Mn4O12: a = 10.87 ?, c = 11.71 ?, V o = 1382.6 ?3, Z = 4, ρX = 4.50 g/cm3, ρpycn = 4.43 ± 0.09 g/cm3; NdLi3Ba3Mn4O12: a = 10.97 ?, c = 10.34 ?, V o = 1244.3 ?3, Z = 4, ρX = 5.33 g/cm3, ρpycn = 5.23 ± 0.09 g/cm3; NdNa3Ba3Mn4O12: a = 10.99 ?, c = 11.15 ?, V o = 1346.7 ?3, Z = 4; ρX = 5.11 g/cm3, ρpycn = 5.05 ± 0.06 g/cm3; NdK3Ba3Mn4O12: a = 10.997 ?; c = 13.80 ?, V o = 1668.9 ?3, Z = 4, ρX = 4.32 g/cm3, ρpycn = 4.26 ± 0.07 g/cm3. Original Russian Text ? B.K. Kasenov, E.S. Mustafin, M.A. Akubaeva, S.T. Edil’baeva, Sh.B. Kasenova, Zh.I. Sagintaeva, S.Zh. Davrenbekov, 2009, published in Zhurnal Neorganicheskoi Khimii, 2009, Vol. 54, No. 3, pp. 424–427.  相似文献   

20.
The persistent luminescence materials, barium aluminates doped with Eu2+ and Dy3+ (BaAl2O4:Eu2+,Dy3+), were prepared with the combustion synthesis at temperatures between 400 and 600 °C as well as with the solid state reaction at 1500 °C. The concentrations of Eu2+/Dy3+ (in mol% of the Ba amount) ranged from 0.1/0.1 to 1.0/3.0. The electronic and defect energy level structures were studied with thermoluminescence (TL) and synchrotron radiation (SR) spectroscopies: UV-VUV excitation and emission, as well as with X-ray absorption near-edge structure (XANES) methods. Theoretical calculations using the density functional theory (DFT) were carried out in order to compare with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号