首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Four definite compounds exist in the Sm2O3Ga2O3 binary phase diagram, namely: Sm3GaO6, Sm4Ga2O9, SmGaO3, and Sm3Ga5O12. The 31 compound is orthorhombic (space group Pnna - Z.4) with the cell parameters: a = 11.400Å, b = 5.515Å, c = 9.07Å and belongs to the oxysel family. Sm3GaO6 and SmGaO3 melt incongruently at 1715 and 1565°C; Sm4Ga2O9 and Sm3Ga5O12 have a congruent melting point at 1710 and 1655°C. With regard to the Gd2O3Ga2O3 system three definite compounds have been identified: Gd3GaO6, Gd4Ga2O9, and Gd3Ga5O12. Only the garnet melts congruently at 1740°C with the following composition: Gd3.12Ga4.88O12. Gd3GaO6, and Gd4Ga2O9 melt incongruently at 1760 and 1700°C. GdGaO3 is only obtained by melt overheating which may yield an equilibrium or a metastable phase diagram.  相似文献   

2.
Phase transitions in MgAl2O4 were examined at 21-27 GPa and 1400-2500 °C using a multianvil apparatus. A mixture of MgO and Al2O3 corundum that are high-pressure dissociation products of MgAl2O4 spinel combines into calcium-ferrite type MgAl2O4 at 26-27 GPa and 1400-2000 °C. At temperature above 2000 °C at pressure below 25.5 GPa, a mixture of Al2O3 corundum and a new phase with Mg2Al2O5 composition is stable. The transition boundary between the two fields has a strongly negative pressure-temperature slope. Structure analysis and Rietveld refinement on the basis of the powder X-ray diffraction profile of the Mg2Al2O5 phase indicated that the phase represented a new structure type with orthorhombic symmetry (Pbam), and the lattice parameters were determined as a=9.3710(6) Å, b=12.1952(6) Å, c=2.7916(2) Å, V=319.03(3) Å3, Z=4. The structure consists of edge-sharing and corner-sharing (Mg, Al)O6 octahedra, and contains chains of edge-sharing octahedra running along the c-axis. A part of Mg atoms are accommodated in six-coordinated trigonal prism sites in tunnels surrounded by the chains of edge-sharing (Mg, Al)O6 octahedra. The structure is related with that of ludwigite (Mg, Fe2+)2(Fe3+, Al)(BO3)O2. The molar volume of the Mg2Al2O5 phase is smaller by 0.18% than sum of molar volumes of 2MgO and Al2O3 corundum. High-pressure dissociation to the mixture of corundum-type phase and the phase with ludwigite-related structure has been found only in MgAl2O4 among various A2+B3+2O4 compounds.  相似文献   

3.
The Gd3Fe5O12 nanocrystalline Gadolinium Iron Garnet (GdIG) obtained from a sintered block was milled in a high energy ball mill. We measured the magnetization at 5 K under applied fields up to 12 T. We report here our study of approach to saturation magnetization. The results have been interpreted within the framework of random anisotropy model. From an analysis of the approach to saturation magnetization some fundamental parameters have been extracted. We have determined the anisotropy field Hr and the local magnetic anisotropy constant KL. In addition, first-principles spin-density functional calculations, using the Full potential Linear Augmented Plane Waves (FLAPW) method are performed to investigate electronic and magnetic structures. All computed parameters are discussed and compared to available experimental data.  相似文献   

4.
The crystal structure of Ca12Al14O32Cl2 was determined from laboratory X-ray powder diffraction data (CuKα1) using the Rietveld method, with the anisotropic displacement parameters being assigned for all atoms. The crystal structure is cubic (space group , Z=2) with lattice dimensions a=1.200950(5) nm and V=1.73211(1) nm3. The reliability indices calculated from the Rietveld method were Rwp=8.48% (S=1.21), Rp=6.05%, RB=1.27% and RF=1.01%. The validity of the structural model was verified by the three-dimensional electron density distribution, the structural bias of which was reduced as much as possible using the maximum-entropy methods-based pattern fitting (MPF). The reliability indices calculated from the MPF were RB=0.75% and RF=0.56%. In the structural model there are one Ca site, two Al sites, two O sites and one Cl site. This compound is isomorphous with Ca12Al10.6Si3.4O32Cl5.4. Europium-doped sample Ca12Al14O32Cl2:Eu2+ was prepared and the photoluminescence properties were presented. The excitation spectrum consisted of two wide bands, which were located at about 268 and 324 nm. The emission spectrum, when excited at 324 nm, resulted in indigo light with a peak at about 442 nm.  相似文献   

5.
Orthorhombic Al2O3-rich aluminoborate is an important ceramic material for which two slightly different compositions have been assumed: Al5BO9 (5Al2O3:B2O3) and Al18B4O33 (9Al2O3:2B2O3). The formula Al18B4O33 (=Al4.91B1.09O9) was derived from results of chemical analyses when crystal structure data were not yet available. Subsequent structural investigations indicated Al5BO9 composition. Nevertheless, Al18B4O33 was still accepted as the correct stoichiometry assuming that additional B replaces 9% Al.Powder samples of both compositions and ones with excess boron were prepared by solid state reactions between α-Al2O3 and B2O3/H3BO3 at temperatures above 1100 °C and single-crystals were grown from flux at 1100 and 1550 °C. Products were investigated by single-crystal and powder XRD, 11B and 27Al solid-state MAS-NMR, Raman and FTIR spectroscopy as well as Laser-ablation ICP-MS. No indication of the predicted 9% B→Al substitution was found. LA ICP-MS indicated 12.36(27) wt% B2O3 corresponding to Al4.97B1.03O9. Hence, the suggested Al18B4O33 stoichiometry can be excluded for all synthesized samples. A very low amount of Al vacancies at a five-fold coordinated site are likely, charge balanced by an additional nearby three-fold coordinated B site. All evidences indicate that the title compound should be reported as Al5−xB1+xO9 with x<0.038(6), which is close to Al5BO9.  相似文献   

6.
Electron spin resonance spectra of Gd3+ in diluted solid solutions of Gd2O3 in CeO2 have been studied at room temperature for Gd concentrations between 0.01 and 1.00 mol%. While in the case of Mn2+:CeO2 samples, both the linewidth and the line intensity go through a maximum between 0.2 and 0.4% Mn and then start to decrease, in the case of Gd3+:CeO2 samples the linewidth and the line intensity increase monotonically with the dopant concentration. This as taken as evidence that in Gd2O3-CeO2 diluted solid solutions there are no clustering effects similar to the ones observed in Mn:CeO2 solid solutions. It is not clear why clustering effects are present in Mn:CeO2 solid solutions and not in Gd:CeO2 solid solutions; however, it seems reasonable to assume that this is due to the fact that the ionic radius of Mn2+ (81 pm) is about 25% smaller that that of Gd3+ (107.8 pm). In any case, the fact that Gd:CeO2 solid solutions do not exhibit clustering effects means that ESR linewidth data can be used to estimate the concentration of Gd in CeO2 samples, as it is possible to do in several solid solutions of paramagnetic ions in ceramic materials. The results also suggest that the range of the exchange interaction between Gd3+ ions in CeO2 is about 0.89 nm.  相似文献   

7.
A series of uniform, monodispersed Gd(OH)3:Eu3+ nanospheres less than 100 nm were successfully synthesized with iron ions as catalyst and DMF as solvent under the solvothermal condition. Cetyltrimethyl ammonium bromide (CTAB) and Polyvinylpyrrolidone (PVP) were performed as co-surfactant during this facile procedure should be changed as A series of uniform, monodisperse Gd(OH)3:Eu3+ nanospheres less than 100 nm in diameter were successfully synthesized with solvothermal method. Iron ion was used as catalyst and Dimethylformamide (DMF) as solvent, Cetyltrimethyl Ammonium Bromide (CTAB) and Polyvinylpyrrolidone (PVP) were performed as surfactants. Further calcination process was applied to prepare Gd2O3:Eu3+ nanoshpheres during this facile procedure.  相似文献   

8.
Nickel was successfully introduced into the Gd5Sb3 and Gd5Bi3 binaries to yield the Gd5Ni0.96(1)Sb2.04(1) and Gd5Ni0.71(1)Bi2.29(1) phases. Both Ni-substituted compounds adopt the orthorhombic Yb5Sb3-type structure. While the Gd5Ni0.71Bi2.29 phase is thermodynamically stable at 800 °C and decomposes at lower temperatures upon annealing, it can be easily quenched to room temperature by rapid cooling from 800 °C. The Gd5Ni0.96Sb2.04 phase is found to be thermodynamically stable till room temperature. Through annealing at different temperatures, Gd5Bi3 was proven to undergo the Mn5Si3-type (LT)↔Yb5Sb3-type (HT) transformation reversibly, whereas Gd5Sb3 was found to adopt only the hexagonal Mn5Si3-type structure. Orthorhombic Gd5Ni0.96Sb2.04 and Gd5Ni0.71Bi2.29 and low-temperature hexagonal Gd5Bi3 order ferromagnetically at 115, 162 and 112 K, respectively. In Gd5Bi3, the ferromagnetic ordering is followed by spin reorientation below 64 K. Magnetocaloric effect in terms of ΔS was evaluated from the magnetization data and found to reach the maximum values of −7.7 J/kgK for Gd5Ni0.96Sb2.04 and −5.6 J/kgK for Gd5Ni0.71Bi2.29 around their Curie temperatures.  相似文献   

9.
Two pure light rare earth iron garnets Pr3Fe5O12 and Nd3Fe5O12 single crystals were synthesized under mild hydrothermal conditions and structurally characterized by single crystal and powder X-ray diffraction methods. Both compounds crystallize in cubic space group Ia3?d with lattice parameters a=12.670(2) Å for Pr3Fe5O12 and a=12.633(2) Å for Nd3Fe5O12, respectively. The synthesis of compounds was studied with regard to phase evolution and morphology development with hydrothermal conditions. We proposed the formation mechanisms and formulated a reasonable explanation for their growth habits. Ferrimagnetic Curie temperatures which have been inferred from thermo-magnetization curves were 580 K for Pr3Fe5O12 and 565 K for Nd3Fe5O12, and the transitions of long range order were also evidenced by differential scanning calorimetry method. The result of magnetic properties has shown that moments of the large radius Pr3+ and Nd3+ ions are parallelly coupled with net moments of iron ions.  相似文献   

10.
Garnet-structure related metal oxides with the nominal chemical composition of Li5La3Nb2O12, In-substituted Li5.5La3Nb1.75In0.25O12 and K-substituted Li5.5La2.75K0.25Nb2O12 were prepared by solid-state reactions at 900, 950, and 1000 °C using appropriate amounts of corresponding metal oxides, nitrates and carbonates. The powder XRD data reveal that the In- and K-doped compounds are isostructural with the parent compound Li5La3Nb2O12. The variation in the cubic lattice parameter was found to change with the size of the dopant ions, for example, substitution of larger In3+(rCN6: 0.79 Å) for smaller Nb5+ (rCN6: 0.64 Å) shows an increase in the lattice parameter from 12.8005(9) to 12.826(1) Å at 1000 °C. Samples prepared at higher temperatures (950, 1000 °C) show mainly bulk lithium ion conductivity in contrast to those synthesized at lower temperatures (900 °C). The activation energies for the ionic conductivities are comparable for all samples. Partial substitution of K+ for La3+ and In3+ for Nb5+ in Li5La3Nb2O12 exhibits slightly higher ionic conductivity than that of the parent compound over the investigated temperature regime 25-300 °C. Among the compounds investigated, the In-substituted Li5.5La3Nb1.75In0.25O12 exhibits the highest bulk lithium ion conductivity of 1.8×10−4 S/cm at 50 °C with an activation energy of 0.51 eV. The diffusivity (“component diffusion coefficient”) obtained from the AC conductivity and powder XRD data falls in the range 10−10-10−7 cm2/s over the temperature regime 50-200 °C, which is extraordinarily high and comparable with liquids. Substitution of Al, Co, and Ni for Nb in Li5La3Nb2O12 was found to be unsuccessful under the investigated conditions.  相似文献   

11.
A new gadolinium fluoride borate Gd4B4O11F2 was yielded in a Walker-type multianvil apparatus at 7.5 GPa and 1100 °C. Gd4B4O11F2 crystallizes monoclinically in the space group C2/c with the lattice parameters a=1361.3(3) pm, b=464.2(2) pm, c=1374.1(3) pm, and β=91.32(3)° (Z=4). The crystal structure exhibits a structural motif not yet reported from borate chemistry: two BO4-tetrahedra (□) and two BO3-groups (?) are connected via common corners, leading to the fundamental building block 2?2□:?□□?. In the two crystallographically identical BO4-tetrahedra, a distortion resulting in a very long B-O-bond is found.  相似文献   

12.
A series of Bi2(GaxAl1−x)4O9 solid solutions (0≤x≤1), prepared by mechanochemical processing of Bi2O3/Ga2O3/Al2O3 mixtures and subsequent annealing, was investigated by XRD, EDX, and 27Al MAS NMR. The structure of the Bi2(GaxAl1−x)4O9 solid solutions is found to be orthorhombic, space group Pbam (No. 55). The lattice parameters of the Bi2(GaxAl1−x)4O9 series increase linearly with increasing gallium content. Rietveld refinement of the XRD data as well as the analysis of the 27Al MAS NMR spectra show a preference of gallium cations for the tetrahedral sites in Bi2(GaxAl1−x)4O9. As a consequence, this leads to a far from random distribution of Al and Ga cations across the whole series of solid solutions.  相似文献   

13.
通过水热法和正硅酸乙酯水解法制备了一种新颖的Gd2O3:Eu@mSiO2核壳双功能(荧光和介孔)纳米棒。用扫描电镜(SEM)、透射电镜(TEM)、X射线粉末衍射(XRD)、红外光谱(FTIR)等多种测试手段对样品的形貌、物相结构进行分析表征。结果表明,该核壳结构纳米材料以Gd2O3:Eu纳米棒(长~400 nm,直径~100 nm)为核,介孔SiO2为壳,尺寸均匀,分散性良好。荧光光谱表明,在紫外光激发下,核壳纳米棒发射强烈的橙红色荧光。同时该核壳纳米棒能成功标记NCI-H460肺癌细胞。以布洛芬(IBU)为药物模型研究核壳纳米棒的药物负载和释放行为,结果表明,Gd2O3:Eu@mSiO2核壳纳米棒对IBU的负载量可达10.25%,而且其具有明显的缓释效果。IBU负载的样品(IBU-Gd2O3:Eu3+@mSiO2)在紫外光照射下仍呈现Eu3+的橙红色发光,且Eu3+在载药系统中的发光强度随IBU释放量的变化而变化,因此通过发光强度的变化可以跟踪和监测药物及其释放情况。  相似文献   

14.
The structure of Gd2Zr2O7 pyrochlore over the temperature range 4-300 K has been refined from powder neutron diffraction data. The sample was enriched in 160Gd to avoid the high neutron absorption of naturally occurring Gd. The diffraction pattern showed well resolved superlattice reflections indicative of the pyrochlore structure and no evidence is found for anion-disorder from the structural refinements.  相似文献   

15.
The subsolidus phase relations in the B-rich part of the ternary system, Na2O-SrO-B2O3, are investigated by the powder X-ray diffraction method. Four ternary compounds: NaSrBO3, NaSr4B3O9, Na3SrB5O10 and NaSrB5O9 were found in it, the two lasts are new. NaSrB5O9 crystallizes in the monoclinic space group P21/c, with the lattice parameters a=6.4963(1) Å, b=13.9703(2) Å, c=8.0515(1) Å, β=106.900(1)°. Na3SrB5O9 is also monoclinic, space group C2, a=7.290(1) Å, b=13.442(2) Å, c=9.792(1) Å, β=109.60(1). NaSrB5O9 is isostructural with another pentaborate NaCaB5O9, and its structure was refined by Rietveld method based on the structural model of NaCaB5O9. The fundamental building units are [B5O9]3− anionic groups, forming complex thick anionic sheets, extending parallel to the ac plane. The Na and Sr atoms are all eight-coordinated with O atoms, forming trigonal dodecahedra. The [NaO8] polyhedra are distributed between the B-O sheets, while the [SrO8] polyhedra located in the sheets and connect with each other by edges to form infinite chains along the c-axis.  相似文献   

16.
The characterization and luminescence properties of nanostructured Gd2O3:Eu3+ phosphors synthesized by a sol-lyophilization process are presented. After preparation of gadolinium-based sols from gadolinium nitrate and ammonium hydroxide, the so-prepared sols were freeze dried at −10°C and calcinated at different temperatures. For temperatures lower than 1300 K, highly crystalline samples with the cubic structure can be obtained without concomitant grain growth of the particles (<50 nm). The luminescence spectra contain all possible transitions of Eu3+ with C2 symmetry and present two major features: an increase of the luminescence efficiencies of the phosphors in comparison with that obtained by solid-state reaction and the presence of an additional peak at about 609 nm at the vicinity of the 5D07F0…4 transition.  相似文献   

17.
The area of existence of Gd2Sr1−x Ca x Al2O7 solid solutions at x ≤ 0.5 was determined by the X-ray phase analysis. It was found by full-profile X-ray structural analysis that, in contrast to La2Sr1−x Ca x Al2O7 solid solutions, the Ca2+ cations occupy not only AO9 nine-vertex fragments, but also AO12 oxygen cubooctahedra. Full ordering of Sr2+ cations in the perovskite layer is observed at the calcium content x 0.5. Original Russian Text ? I.A. Zvereva, A.G. Cherepova, Yu.E. Smirnov, 2007, published in Zhurnal Obshchei Khimii, 2007, Vol. 77, No. 4, pp. 557–563. For communication XI, see [1].  相似文献   

18.
The garnets Li3Nd3W2O12 and Li5La3Sb2O12 have been prepared by heating the component oxides and hydroxides in air at temperatures up to 950 °C. Neutron powder diffraction has been used to examine the lithium distribution in these phases. Both compounds crystallise in the space group with lattice parameters a=12.46869(9) Å (Li3Nd3W2O12) and a=12.8518(3) Å (Li5La3Sb2O12). Li3Nd3W2O12 contains lithium on a filled, tetrahedrally coordinated 24d site that is occupied in the conventional garnet structure. Li5La3Sb2O12 contains partial occupation of lithium over two crystallographic sites. The conventional tetrahedrally coordinated 24d site is 79.3(8)% occupied. The remaining lithium is found in oxide octahedra which are linked via a shared face to the tetrahedron. This lithium shows positional disorder and is split over two positions within the octahedron and occupies 43.6(4)% of the octahedra. Comparison of these compounds with related d0 and d10 phases shows that replacement of a d0 cation with d10 cation of the same charge leads to an increase in the lattice parameter due to polarisation effects.  相似文献   

19.
TiO2/Gd2O3纳米粉体的制备、表征及光催化活性   总被引:4,自引:0,他引:4       下载免费PDF全文
利用酸催化的溶胶-凝胶法制备了纯TiO2和Gd3+(0.5wt%)掺杂的TiO2纳米粉体,采用XRD、BET、XPS、紫外-可见漫反射谱(DRS)和表面光电压谱(SPS)等技术进行了表征;以亚甲基蓝(MB)的光催化降解为探针反应,评价了其光催化活性;探讨了Gd3+掺杂对TiO2纳米粉体的光催化活性的影响机制。结果表明,TiO2/Gd2O3纳米粒子对MB溶液的光催化活性提高到纯TiO2的1.5倍。掺杂Gd3+可以强烈抑制TiO2由锐钛矿相向金红石相的转变;阻碍TiO2晶粒的生长;提高高温组织稳定性,改善粉体的表面织构特性;形成光生电子的浅势捕获陷阱,抑制e-/h+复合,这些因素共同作用最终导致TiO2/Gd2O3纳米粉体的光催化活性明显提高。XPS分析结果证实,掺杂Gd3+导致粉体的表面羟基含量降低。由于产生了量子尺寸效应,复合粉体的紫外吸收带边蓝移,光的吸收能力略有降低。  相似文献   

20.
采用高温固相法制备了Ce、Sm共掺Lu_3Al_5O_(12)荧光粉。通过X射线衍射分析、荧光光谱分析研究了样品的结构、发光特性,并通过理论计算研究了能量传递效率、能量传递的临界距离以及能量传递方式。X射线衍射分析表明所制备的荧光粉具有单一的石榴石结构;荧光光谱分析表明,在464 nm蓝光激发下,Sm~(3+)的引入可增加Lu_3Al_5O_(12)∶Ce,Sm发射光谱中红光成分,并且随着Sm~(3+)浓度的增加,Ce~(3+)发光强度逐渐减弱。计算出Ce~(3+)、Sm~(3+)之间的能量传递效率高达77.42%,确定了Ce~(3+)、Sm~(3+)之间的能量传递机制为偶极-偶极相互作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号