首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
We perform computer simulations of using a micropipette to attach and then detach a red blood cell on a flat substrate mediated by receptor-ligand binding. The cell is initially swollen with osmotic pressure, coated with a specific kind of bio-molecular receptor, sucked into the micropipette and then allowed to approach a substrate coated with the corresponding ligand. Binding interactions between the membrane-bound receptors and the substrate-anchored ligands cause the cell to spread onto the substrate surface. While the specific interaction between a pair of receptor and ligand is described by a chemical reaction equation, a traction-separation law is adopted to describe the non-specific interactions between the receptors and the substrate. A surface diffusion model is introduced to describe the mobility of the receptors within the cell membrane. After the equilibrium state of adhesion is achieved, a pulling force is applied on the micropipette to detach the cell from the substrate. The governing equations of cell-substrate interactions and receptor diffusion are implemented in a finite element scheme to simulate the entire process of cell suction, cell spreading, receptor diffusion, and cell detachment, and to investigate the effects of membrane stiffness, cohesive parameters, micropipette size, and suction pressure on the unbinding kinetics of the cell. The simulation results are shown to agree qualitatively with existing experimental data.  相似文献   

2.
Cell behavior is mediated by variety of physiochemical properties of the extracellular matrix (ECM). Mechanical stiffness of ECM, in particular, is found to be a major regulator for the multiple aspects of cellular function. Experiments show that cells generally exhibit an apparent adhesion preference for stiffer substrates. The effect of substrate elasticity is also found to be strongly coupled with adhesivity of the substrate. To understand the underlying physics of rigidity sensing mechanism in cells, in this study we use a vesicle-substrate system to model cell adhesion as a first order approximation. Within this framework, an equilibrium thermodynamic analysis is undertaken to elucidate the interplay between substrate compliance and equilibrium configuration of an adherent vesicle. The equilibrium adhesion is assumed to ensure minimization of the free energy contributed by substrate deformation and interfacial adhesive and repulsive interactions between the membrane and substrate. The predictions of this purely mechanistic model are found to be qualitatively analogous to some of the characteristic features of cell adhesion to compliant bio-adhesive substrates. This observation suggests that the physical aspects of the membrane–substrate interfacial interactions could passively contribute in regulation of the rigidity sensing by cells.  相似文献   

3.
Equilibrium adhesion states are analyzed for nonlinear spherical caps adhered to a rigid substrate under the influence of adhesive tractions that depend on the local separation between the shell and substrate. Transitions between bistable snapped-in and snapped-out configurations are predicted as a function of four nondimensional parameters representing the adhesive energy, the undeformed shell curvature, the range of the adhesive interactions, and the magnitude of an externally applied load. Nonuniform energy and traction fields associated with free-edge boundary conditions are calculated to better understand localized phenomena such as the diffusion of impurities into a bonded interface and the diffusion of receptors in the cell membrane. The linear Griffith approximations commonly used in the literature are shown to be limited to shells with a small height to thickness ratio and short-range adhesive interactions. External loading is found to alter the adhered configurations and the spatial distributions of both adhesive and elastic energies. An important implication of the latter analysis is the theoretical prediction of the pull-off force, which is shown to depend not only on the interface properties, but also on the geometric and material parameters of the shell and on both the magnitude and type of external loading.  相似文献   

4.
In order to study the adhesion mechanism of a viscoelastic thin-film on a substrate, peeling experiment of a viscoelastic polyvinylchloride (PVC) thin-film on a rigid substrate (glass) is carried out. The effects of peeling rate, peeling angle, film thickness, surface roughness and the interfacial adhesive on the peel-off force are considered. It is found that both the viscoelastic properties of the film and the interfacial adhesive contribute to the rate-dependent peel-off force. For a fixed peeling rate, the peel-off force decreases with the increasing peeling angle. Increasing film thickness or substrate roughness leads to an increase of the peel-off force. Viscoelastic energy release rate in the present experiment can be further predicted by adopting a recently published theoretical model. It is shown that the energy release rate increases with the increase of peeling rates or peeling angles. The results in the present paper should be helpful for understanding the adhesion mechanism of a viscoelastic thin-film.  相似文献   

5.
Cell adhesion often exhibits the clustering of the receptor–ligand bonds into discrete focal-adhesion sites near the contact edge, thus resembling a rosette shape or a contracting membrane anchored by a small number of peripheral forces. The ligands on the extracellular matrix are immobile, and the receptors in the cell plasma membrane consist of two types: high-affinity integrins (that bond to the substrate ligands and are immobile) and low-affinity integrins (that are mobile and not bonded to the ligands). Thus the adhesion energy density is proportional to the high-affinity integrin density. This paper provides a mechanistic explanation for the clustering/assembling of the receptor–ligand bonds from two main points: (1) the cellular contractile force leads to the density evolution of these two types of integrins, and results into a large high-affinity integrin density near the contact edge and (2) the front of a propagating crack into a decreasing toughness field will be unstable and wavy. From this fracture mechanics perspective, the chemomechanical equilibrium is reached when a small number of patches with large receptor–ligand bond density are anticipated to form at the cell periphery, as opposed to a uniform distribution of bonds on the entire interface. Cohesive fracture simulations show that the de-adhesion force can be significantly enhanced by this nonuniform bond density field, but the de-adhesion force anisotropy due to the substrate elastic anisotropy is significantly reduced.  相似文献   

6.
7.
We study the large deformation mechanics of contact and adhesion between an inflated hyperelastic membrane and a rigid substrate. The initial configuration of the membrane is flat and circular and is clamped at the edge. Two types of friction conditions between the membrane and the substrate are considered: frictionless and no-slip contact. We derive an exact expression for the energy release rate in terms of local variables at the contact edge, thus linking adhesion to the contact angle. Our model can account for the effects of fluid pressure for experiments performed in solution. We also extend our formulation to include surface tension. Numerical simulations for a neo-Hookean membrane are carried out to study the relation between applied pressure and contact area.  相似文献   

8.
The problem that is addressed here is that of a pressurized circular membrane in adhesive contact with a rigid substrate. A closed-form membrane analysis is developed for the JKR, DMT and Maugis regimes, which describes the relationships between adhesion energy, pressure, contact radius and contact force. The JKR–DMT transition is studied for this case of membrane contact by introducing an appropriate dimensionless parameter. Experiments are conducted with smooth and structured acrylate layers on a PET carrier film contacting a glass substrate using an apparatus based on moiré deflectometry to measure the contact radius and slope of these thin transparent films. They demonstrate that this analysis predicts the contact radius well. The adhesion energy extracted from the analysis of the measured pressure-contact radius response is constant during unloading but appears to increase during pressurization.  相似文献   

9.
高速干铣削钛合金时涂层硬质合金刀具磨损机理研究   总被引:6,自引:0,他引:6  
采用CVD涂层硬质合金可转位立铣刀对钛合金(Ti-6Al-4V)进行了高速干铣削试验,采用扫描电子显微镜(SEM)观察刀具的磨损形貌,通过能谱分析(EDS)分析失效刀具表面的元素分布,并对刀具的主要磨损机理进行了分析.研究结果表明:使用涂层硬质合金刀具高速干铣削Ti-6Al-4V时,刀具的失效机理主要为磨粒磨损、粘结磨损、氧化磨损、扩散磨损和热-机械疲劳磨损的综合作用.刀具刚参与切削时,刀具后刀面会产生粘结和由于摩擦引起的擦伤,粘结层在断续冲击作用下的脱落过程还会造成后刀面涂层的剥落;随着刀具进一步的磨损,涂层剥落、粘结磨损及磨粒磨损伴随整个刀具失效过程,且还会出现氧化磨损、扩散磨损和疲劳裂纹等.切削速度越高,新产生的钛合金切屑就越容易燃烧,使刀具粘结、氧化和扩散以及热-机械疲劳等磨损加剧.  相似文献   

10.
硅表面电沉积MoS2薄膜及其微观摩擦性能研究   总被引:2,自引:0,他引:2  
以单晶硅片为基片,采用电化学沉积工艺通过阴极还原硫代钼酸根制备MoS2薄膜,利用光学显微镜、扫描电子显微镜、X射线衍射仪、俄歇电子能谱仪以及原子力显微镜表征薄膜结构,并研究其微观摩擦磨损性能.结果表明:所制备的薄膜为纳米/亚微米厚度,表面光滑致密,结构为非晶态,由钼、硫和氧元素构成;微米厚度的薄膜表面粗糙度增加,薄膜易开裂,结合性差;沉积MoS2薄膜的硅表面的最小摩擦力约为原始硅表面的1/2;沉积MoS2可以使硅表面的粘着能减少50%左右,从而使其微观摩擦力降低.  相似文献   

11.
We consider the adhesion of a pressure sensitive adhesive on different substrates (Pyrex, stainless steel, Plexiglas). First, we characterize the rheological properties of the adhesive material and compare it with the predictions of Lodge's model. Then we investigate the adhesive properties using a special machine which enables us to peel at 90° with a fixed peeling front and we construct peeling master curves on different substrates. The mechanisms of peeling are analyzed by looking at the peeling front using a video camera. We realize that the flow within the filaments and ribs observed is mainly of elongational type. Also, by looking at the shape of the backing, we find out that most of the energy is spent within the ribs or filaments.To understand the effect of rheology on adhesion, we propose a simple model to predict peeling curves, by assuming that the flow is mainly of elongational type. This explains the high energy regions. At low velocities, surface energies become important and their effect is also analyzed.To conclude, we propose different dimensionless equations which explain the importance of the relevant parameters, via dimensionless numbers. Thus the peeling energy is investigated, as well as the condition which predicts the transition from cohesive to adhesive peeling.  相似文献   

12.
Molecular dynamics (MD) simulations are performed to study adhesion and peeling of a short fragment of single strand DNA (ssDNA) molecule from a graphite surface. The critical peel-off force is found to depend on both the peeling angle and the elasticity of ssDNA. For the short ssDNA strand under investigation, we show that the simulation results can be explained by a continuum model of an adhesive elastic band on substrate. The analysis suggests that it is often the peak value, rather than the mean value, of adhesion energy which determines the peeling of a nanoscale material.The project supported by the Distinguished Young Scholar Fund of NSFC (10225209) and key project from the Chinese Academy of Sciences (KJCX2-SW-L2)  相似文献   

13.
14.
采用光滑粒子动力学SPH方法建立液滴冲击弹性基底的流固耦合数值模型,给出描述粘性流体和弹性固体运动的SPH离散方程和数值处理格式,引入人工耗散项来抑制标准SPH方法的数值震荡。为模拟液滴的表面张力效应,通过精确检测边界粒子,采用拉格朗日插值方法计算表面法向量和曲率,结合界面理论中的连续表面力CSF方法,建立了适用于自由表面液滴的表面力模型,方形液滴变形的模拟结果与拉普拉斯理论解吻合较好。随后,采用SPH流固耦合模型模拟1.0 mm直径水滴以不同速度(0.2 m/s~3.0 m/s)冲击两种薄板型基底,分析了基底弹性变形对液滴铺展、收缩以及回弹行为的影响。  相似文献   

15.
应用大规模分子动力学方法,模拟了具有原子级光滑和原子级粗糙形貌的刚性球形探头与弹性平面基体的干摩擦行为,研究了无/有粘附条件下的载荷与摩擦力、载荷与真实接触面积,以及摩擦力与真实接触面积之间的关系,对纳米尺度下的摩擦行为规律进行了分析。几种系统的真实接触面积-载荷关系都与相应的连续力学接触模型定性的一致,它们分别是Hertz光滑表面接触模型、Greenwood-Williamson粗糙表面接触模型和Maugis-Dugdale粘着接触模型。无论是由光滑表面还是粗糙表面构成的摩擦系统,在无粘附条件下摩擦力与载荷成正比,而摩擦力与真实接触面积之间没有一个简单的关系;在粘附条件下摩擦力与真实接触面积成正比,而摩擦力与载荷之间表现为Maugis-Dugdale模型预测的亚线性关系。我们的研究表明,当表面作用从无粘附到粘附时,控制摩擦力的决定因素从载荷转变为接触面积,摩擦行为从载荷控制摩擦转变为粘着控制摩擦。  相似文献   

16.
This paper aims at developing a stochastic-elastic model of a soft elastic body adhering on a wavy surface via a patch of molecular bonds. The elastic deformation of the system is modeled by using continuum contact mechanics, while the stochastic behavior of adhesive bonds is modeled by using Bell's type of exponential bond association/dissociation rates. It is found that for sufficiently small adhesion patch size or stress concentration index, the adhesion strength is insensitive to the wavelength but decreases with the amplitude of surface undulation, and that for large adhesion patch size or stress concentration index, there exist optimal values of the surface wavelength and amplitude for maximum adhesion strength.  相似文献   

17.
The present paper analytically investigates the adhesive behavior of power-law graded elastic solids under a combined action of external normal loading and a substrate stretch-induced mismatch strain with the effect of mode-mixity taken into account. A plane strain non-slipping model, a plane strain non-coupling model and an axisymmetric non-coupling model have been analyzed, respectively. Our results show that under a finite normal force, the equilibrium of the adhesive system may lost its stability at a critical value of mismatch strain, which significantly depends on both the graded material constants and the degree of mode-mixity. This indicates that the strongest or weakest adhesion strength under substrate stretching can be achieved by designing the physical constants of the adhesive system appropriately. These results provide a theoretical foundation for novel applications of functional graded materials in adhesion systems.  相似文献   

18.
The effect of adhesion on the contact behavior of elastic rough surfaces is examined within the framework of the multi-asperity contact model of Greenwood and Williamson (1966), known as the GW model. Adhesive surface interaction is modeled by nonlinear springs with a force–displacement relation governed by the Lennard–Jones (LJ) potential. Constitutive models are presented for contact systems characterized by low and high Tabor parameters, exhibiting continuous (stable) and discontinuous (unstable) surface approach, respectively. Constitutive contact relations are obtained by integrating the force–distance relation derived from the LJ potential with a finite element analysis of single-asperity adhesive contact. These constitutive relations are then incorporated into the GW model, and the interfacial force and contact area of rough surfaces are numerically determined. The development of attractive and repulsive forces at the contact interface and the occurrence of instantaneous surface contact (jump-in instability) yield a three-stage evolution of the contact area. It is shown that the adhesion parameter introduced by Fuller and Tabor (1975) governs the strength of adhesion of contact systems with a high Tabor parameter, whereas the strength of adhesion of contact systems with a low Tabor parameter is characterized by a new adhesion parameter, defined as the ratio of the surface roughness to the equilibrium interatomic distance. Applicable ranges of aforementioned adhesion parameters are interpreted in terms of the effective surface separation, obtained as the sum of the effective distance range of the adhesion force and the elastic deformation induced by adhesion. Adhesive strength of rough surfaces in the entire range of the Tabor parameter is discussed in terms of a generalized adhesion parameter, defined as the ratio of the surface roughness to the effective surface separation.  相似文献   

19.
粉末热压扩散与应力场耦合的力学模型   总被引:3,自引:0,他引:3  
吴艳青  黄风雷 《力学学报》2008,40(4):550-556
以弹性接触应力场为初始条件,建立了热压条件下球形颗粒表面扩散与应力场耦合的力学模型. 引入包含表面能项级数形式的应力函数,以描述随时间演化的表面扩散过程及扩散对应力场演化的影响. 而应力场通过改变化学势梯度,又会促进(或阻止)表面扩散结合的进程.利用该模型分析了压力、温度和界面区应力场演化对致密化参数的影响. 比较了满足粘着或非粘着对结合宽度和应力分布的影响,将考虑粘着的弹性接触应力场作为初始条件,分析了弹性变形和表面扩散共同驱动的粉末冶金热压烧结致密化规律.   相似文献   

20.
陈少华  彭志龙 《力学进展》2012,42(3):282-293
本文针对壁虎粘附系统最小单元的真实形状, 类似于有限尺寸纳米薄膜的铲状纤维, 综述了对其微观粘附力学机制主要影响因素的多个研究, 主要考虑了有限尺寸纳米薄膜长度、厚度、撕脱角等对撕脱力的影响; 物体表面粗糙度以及环境湿度等对粘附的影响因素; 包括实验、理论及数值模拟的研究及结果比较. 最后给出仿生粘附力学方向仍然存在的主要科学问题及进一步的研究展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号