首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A molybdenum (IV) phosphate containing lead, Pb2Mo2(PO4)2P2O7, has been synthesized for the first time. It crystallizes in the space group C2/c with a=14.098(1) Å, b=14.187(2) Å, c=6.5592(4) Å and β=102.08(1)°. Its original tunnel structure, built up of Mo2O11 bioctahedra, P2O7 and PO4 phosphate groups can be described from the assemblage of [Mo4P4O24] ribbons interconnected through monophosphate groups. The stereoactivity of the 6s2 lone pair of Pb2+, which is surrounded by nine oxygen atoms, is discussed.  相似文献   

2.
The crystal structure of Na7Mg4.5(P2O7)4 has been solved by direct methods from the three-dimensional X-ray data. The space group is P1. The crystal structure consists of Mg2+, Na+, and P2O4?7 ions. One magnesium atom at symmetry center (0,0,0) and two sodium atoms at ±(?0.0421, ?0.0596, 0.2230) display occupation factors 0.5 each. A short interatomic distance between these Na+ and Mg2+ ions (1.80 ± 0.01 Å) excludes the occupation of both sites in the same unit cell. The crystal structure of Na7Mg4.5(P2O7)4 consists of unit cells containing Na8Mg4(P2O7)4 or Na6Mg5(P2O7)4 with a statistical occurrence 1:1.Each Mg2+ ion is octahedrally coordinated by six O2? ions at distances 1.979 – 2.270 Å. The coordination polyhedra around the Na+ ions are ill-defined. The bond angles POP in the P2O4?7 groups are 126.6 and 133.6° (±0.3°). The final reliability factor R is 7.1%.  相似文献   

3.
A Mo(V) oligophosphate, built up of di and triphosphate groups, Cs(MoO)4(P2O7)2(P3O10) has been synthesized for the first time. This compound crystallizes in the triclinic P−1 space group with , , , α=94.534(6)°, β=102.520(6)°, γ=103.663(4)°. This original structure can be described by the association of MoO6 octahedra, MoP2O11 units built up of one P2O7 group sharing two apices with the same MoO6 octahedron, and triphosphates groups P3O10. The resulting tridimensional framework forms large S-shaped tunnels running along c where the Cs+ cations are located.  相似文献   

4.
The single crystal structure of a series of nine isotypic Mo(V) diphosphates was determined from crystals with composition A2+(MoO)10(P2O7)8 (A=Ba, Sr, Ca, Cd, Pb) and A+(MoO)5(P2O7)4 (A=Ag, Li, Na, K). The structure of those phosphates, built up of corner sharing MoO6 octahedra, MoO5 tetragonal pyramids and P2O7 diphosphates groups, forms eight-sided tunnels as described by Lii et al. for A=Ag. New features are evidenced: (1) existence of two orientations, up and down along b for the MoO5 pyramids; (2) maximum insertion rate of the divalent cations which is twice less than that of the univalent cations; (3) different behavior of the series “Pb, Sr, Ba, Li, Na, K” which exhibits only one kind of site for the inserted cation, compared to the “Cd, Ca, Ag” series for which two kinds of sites are observed; (4) off-centering of the A-site cations with respect to the tunnel axis; and (5) unusually high thermal factors along the tunnel axis, but absence of ionic conductivity.  相似文献   

5.
The actual structure of the vanadium phosphate K6(VO)2(V2O3)2(PO4)4(P2O7) has been determined, using a much larger single crystal than previously used for the isostructural Rb-phase. The actual supercell is four times larger than the corresponding orthorhombic subcell with , , , α=β=γ=90°. The structure resolution, performed in the triclinic space group C-1, shows that the P2O7 groups alone are responsible for the superstructure, all the other atoms keeping the atomic positions of the orthorhombic subcell. This structural study shows a perfect ordering of the P2O7 groups in the actual structure, in contrast to the results obtained from the subcell. Concomitantly, the V4+ and V5+ are found to be ordered in the form of [110] stripes.  相似文献   

6.
A photochemical method for the preparation of K6[Mo6[Mo2IVMoIV(CN)8O6]2H2O is discussed. The synthesis of this complex was achieved by photolysing aqueous solutions of K4Mo(CN)8 in contact with atmospheric oxygen.  相似文献   

7.
A nickel diphosphate with mixed cations, Na(NH4)[Ni3(P2O7)2(H2O)2] with a layered structure has been synthesized under hydrothermal conditions for the first time and characterized by single crystal X-ray diffraction, IR spectroscope and magnetization measurements. The structure consists of cis- and trans-edge sharing NiO6 octahedral chains linked via P2O7 units to [Ni3P4O16]2− layers. The ammonium and sodium cations are alternately located in the interlayer spaces. The mixed cations play an important role in the structural formation of this layered compound, leading to a new layer-stacking variant. The magnetic susceptibility obeys a Curie–Weiss law with μeff of 3.32 μB, showing the Ni2+ character and weak antiferromagnetic interactions.  相似文献   

8.
A novel Mo(V) diphosphate Sr(MoO)2P2O7 has been synthesized. It crystallizes in the space group P21/n with a=7.925(1) Å, b=7.739(1) Å, c=9.485(1) Å and β=91.05(1)°. Its original framework consists of MoP2O11 units built up of one P2O7 group sharing two apices with one MoO6 octahedron. The MoP2O11 units share corners, forming [MoP2O10] chains running along [101]. The assemblage of these chains forms the [Mo2P4O16] intersecting tunnel framework. The Sr2+ cations are located at the tunnel intersection, showing a distorted cubic coordination. This structure is compared to those of Ba(MoO)2P2O7 and LiMoOP2O7, which are also built up of MoP2O11 units forming [MoP2O10] chains, but with different configurations.  相似文献   

9.
Two new potassium uranyl molybdates K2(UO2)2(MoO4)O2 and K8(UO2)8(MoO5)3O6 have been obtained by solid state chemistry . The crystal structures were determined by single crystal X-ray diffraction data, collected with MoKα radiation and a charge coupled device (CCD) detector. Their structures were solved using direct methods and Fourier difference techniques and refined by a least square method on the basis of F2 for all unique reflections, with R1=0.046 for 136 parameters and 1412 reflections with I?2σ(I) for K2(UO2)2(MoO4)O2 and R1=0.055 for 257 parameters and 2585 reflections with I?2σ(I) for K8(UO2)8(MoO5)3O6. The first compound crystallizes in the monoclinic symmetry, space group P21/c with a=8.250(1) Å, b=15.337(2) Å, c=8.351(1) Å, β=104.75(1)°, ρmes=5.22(2) g/cm3, ρcal=5.27(2) g/cm3 and Z=4. The second material adopts a tetragonal unit cell with a=b=23.488(3) Å, c=6.7857(11) Å, ρmes=5.44(3) g/cm3, ρcal=5.49(2) g/cm3, Z=4 and space group P4/n.In both structures, the uranium atoms adopt a UO7 pentagonal bipyramid environment, molybdenum atoms are in a MoO4 tetrahedral environment for K2(UO2)2(MoO4)O2 and MoO5 square pyramid coordination in K8(UO2)8(MoO5)3O6. These compounds are characterized by layered structures. The association of uranyl ions (UO7) and molybdate oxoanions MoO4 or MoO5, give infinite layers [(UO2)2(MoO4)O2]2− and [(UO2)8(MoO5)3O6]8− in K2(UO2)2(MoO4)O2 and K8(UO2)8(MoO5)3O6, respectively. Conductivity properties of alkali metal within the interlayer spaces have been measured and show an Arrhenius type evolution.  相似文献   

10.
Ce2(MoO4)2(Mo2O7) crystallizes in the triclinic system with unit cell dimensions (from single-crystal data) a = 11.903(8), b = 7.509(5), c = 7.385(5) Å, α = 94.33(8), β = 97.41(8), γ = 88.56(7)°, and space group P1, z = 2. The structure was solved using Patterson (“P1 method”) and Fourier techniques. Of the 8065 unique reflections measured by counter techniques, 6314 with I ≥ 3σ(I) were used in the least-squares refinement of the model to a conventional R of 0.035 (Rw = 0.034). The structure of Ce2(MoO4)2(Mo2O7) consists of dimolybdate chains of the K2Mo2O7 and (NH4)2Mo2O7 type separated by isolated MoO4 tetrahedra and cerium(III) polyhedra.  相似文献   

11.
Hydrocarbon solutions of Mo2(O—t-Bu)6 and PF3 (2 equiv) yield Mo4F4(O—t-Bu)8, I, and PF2(O—t-Bu). Compound I contains a bisphenoid of molybdenum atoms with two short MoMo distances, 2.26 Å, and four long MoMo distances, 3.75 Å, corresponding to localized MoMo triple bonding and non-bonding distances, respectively. The tetranuclear compound may be viewed as a dimer, [Mo22-F)2(O-t-Bu)4]2, and addition of PMe3 to hydrocarbon solutions of I yields Mo2F2(O—t-Bu)4(PMe3)2, II, which contains an unbridged MoMo triple bond of distance 2.27 Å. Each molybdenum atom is coordinated to two oxygen atoms, one fluorine atom and the phosphorus atom of the PMe3 ligand in a roughly square planar manner. The overall central Mo2O4F2P2 skeleton has C2 symmetry and NMR studies (1H, 19F and 31P) are consistent with the maintenance of this type of structure in solution. Infrared and electronic absorption spectral data are reported. These are the first compounds containing fluorine ligands attached to the (MoMo)6+ unit.  相似文献   

12.
The single crystals of caesium magnesium titanium (IV) tri-oxo-tetrakis-diphosphate bis-monophosphate, Cs3.70Mg0.60Ti2.78(TiO)3(P2O7)4(PO4)2, crystallize in sp. gr. P-1 (No. 2) with cell parameters a=6.3245(4), b=9.5470(4), c=15.1892(9) Å, α=72.760(4), β=85.689(5), γ=73.717(4), z=1. The titled compound possesses a three-dimensional tunnel structure built by the corner-sharing of distorted [TiO6] octahedra, [Ti2O11] bioctahedra, [PO4] monophosphate and [P2O7] pyrophosphate groups. The Cs+ cations are located in the tunnels. The partial substitution of Ti positions with Mg atoms is observed. The negative charge of the framework is balanced by Cs cations and Mg atoms leading to pronounced concurrency and orientation disorder in the [P2O7] groups, which coordinate both.  相似文献   

13.
The ligand exchange chemistry for the iron-molybdenum nanocluster [H2PMo12O40⊂H4Mo72Fe30(O2CMe)15O254(H2O)98-x(EtOH)x], {Mo72Fe30(Mo12P)}-EtOH, with 3,5-lutidene, 3-butylpyridine, octanol, octanoic acid, 1-hexadecanethiol, tetraethylene glycol, and dodecylbenzenesulfonic acid is reported. The structure of {Mo72Fe30(Mo12P)} is preserved throughout the reaction and TGA analysis indicates between 5 and 15 ligands could be attached per {Mo72Fe30(Mo12P)}. AFM height measurements increase with increased ligand length; however, the apparent particle diameter appears to be smaller than expected as the ligands increase in size consistent with the adopting a non-extended conformation in a similar manner to that observed for self-assembled monolayers.  相似文献   

14.
A mixed-valent molybdenotungstophosphate, Nax(Mo, W)2O3(PO4)2 (x 0.75) has been isolated for the first time. It crystallizes in the space group P 21/m with a = 7.200(1) Å, b = 6.369(1) Å, c = 9.123(1) Å, and β = 106.29(1)°. Its structure consists of M2PO13 units built up of two M O6 octahedra (M = Mo, W) and one PO4 tetrahedron sharing their apices as already observed in several molybdenum phosphates. These units share their apices with PO4 tetrahedra forming [M2P2O15] chains running along . The host lattice [(Mo, W)2P2O11] can be described by the assemblage of such chains or by the assemblage of [MPO8] chains running along , in which one PO4 tetrahedron alternates with one MO6 octahedron. The tridimensional framework [Mo, WP2O11] delimits tunnels running along , occupied by sodium with two kinds of coordination, 6 and 5. The distribution of the different species, in the octahedral sites according to the formulation Na0.75(MoVI0.42WVI0.58)M1 (MoV0.75WVI0.25)2O3(PO4)2, is discussed.  相似文献   

15.
Ag4(Mo2O5)(SeO4)2(SeO3) has been synthesized by reacting AgNO3, MoO3, and selenic acid under mild hydrothermal conditions. The structure of this compound consists of cis-MoO22+ molybdenyl units that are bridged to neighboring molybdenyl moieties by selenate anions and by a bridging oxo anion. These dimeric units are joined by selenite anions to yield zigzag one-dimensional chains that extended down the c-axis. Individual chains are polar with the C2 distortion of the Mo(VI) octahedra aligning on one side of each chain. However, the overall structure is centrosymmetric because neighboring chains have opposite alignment of the C2 distortion. Upon heating Ag4(Mo2O5)(SeO4)2(SeO3) looses SeO2 in two distinct steps to yield Ag2MoO4. Crystallographic data: (193 K; MoKα, λ=0.71073 Å): orthorhombic, space group Pbcm, a=5.6557(3), b=15.8904(7), c=15.7938(7) Å, V=1419.41(12), Z=4, R(F)=2.72% for 121 parameters with 1829 reflections with I>2σ(I). Ag2(MoO3)3SeO3 was synthesized by reacting AgNO3 with MoO3, SeO2, and HF under hydrothermal conditions. The structure of Ag2(MoO3)3SeO3 consists of three crystallographically unique Mo(VI) centers that are in 2+2+2 coordination environments with two long, two intermediate, and two short bonds. These MoO6 units are connected to form a molybdenyl ribbon that extends along the c-axis. These ribbons are further connected together through tridentate selenite anions to form two-dimensional layers in the [bc] plane. Crystallographic data: (193 K; MoKα, λ=0.71073 Å): monoclinic, space group P21/n, a=7.7034(5), b=11.1485(8), c=12.7500(9) Å, β=105.018(1) V=1002.7(2), Z=4, R(F)=3.45% for 164 parameters with 2454 reflections with I>2σ(I). Ag2(MoO3)3SeO3 decomposes to Ag2Mo3O10 on heating above 550 °C.  相似文献   

16.
Although R2O3:MoO3=1:6 (R=rare earth) compounds are known in the R2O3-MoO3 phase diagrams since a long time, no structural characterization has been achieved because a conventional solid-state reaction yields powder samples. We obtained single crystals of R2Mo6O21·H2O (R=Pr, Nd, Sm, and Eu) by thermal decomposition of [R2(H2O)12Mo8O27nH2O at around 685-715 °C for 2 h, and determined their crystal structures. The simulated XRD patterns of R2Mo6O21·H2O were consistent with those of previously reported R2O3:MoO3=1:6 compounds. All R2Mo6O21·H2O compounds crystallize isostructurally in tetragonal, P4/ncc (No. 130), a=8.9962(5), 8.9689(6), 8.9207(4), and 8.875(2) Å; c=26.521(2), 26.519(2), 26.304(2), and 26.15(1) Å; Z=4; R1=0.026, 0.024, 0.024, and 0.021, for R=Pr, Nd, Sm, and Eu, respectively. The crystal structure of R2Mo6O21·H2O consists of two [Mo2O7]2−-containing layers (A and B layers) and two interstitial R(1)3+ and R(2)3+ cations. Each [Mo2O7]2− group is composed of two corner-sharing [MoO4] tetrahedra. The [Mo2O7]2− in the B layer exhibits a disorder to form a pseudo-[Mo4O9] group, in which four Mo and four O sites are half occupied. R(1)3+ achieves 8-fold coordination by O2− to form a [R(1)O8] square antiprism, while R(2)3+ achieves 9-fold coordination by O2− and H2O to form a [R(2)(H2O)O8] monocapped square antiprism. The disorder of the [Mo2O7]2− group in the B layer induces a large displacement of the O atoms in another [Mo2O7]2− group (in the A layer) and in the [R(1)O8] and [R(2)(H2O)O8] polyhedra. A remarkable broadening of the photoluminescence spectrum of Eu2Mo6O21·H2O supported the large displacement of O ligands coordinating Eu(1) and Eu(2).  相似文献   

17.
During the investigation of the phosphate bronzes (PO2)4(WO3)2m [MPTBP] and Kx(P2O4)2WO3)2m [DPTBH] crystals of a new type were observed. HREM images of these crystals showed twinned ReO3-type slabs the junction of which was parallel to the (102)ReO3 plane. The proposed model identified the twin boundary as built from P2O7 groups involving the formation of pentagonal tunnels. The structure of this new type of extended defects is quite original: it corresponds to a new structural type named “diphosphate tungsten bronzes with pentagonal tunnels” [DPTBP], for which no regular member could be synthesized. Image calculations were performed to confirm the junction model. Apart from the disordered stacking of the ReO3-type slabs, very few defects were observed and shear planes were only obtained in reduced samples. This new structural type takes its place in the large family of phosphate tungsten bronzes where all members (DPTBH, MPTBH, MPTBP) are very closely related.  相似文献   

18.
A novel organic/inorganic compound [Hbenzimi]4[(benzimi)2Mo8O26] · 2H2O (1) has been prepared hydrothermally and characterized by elemental analyses, i.r., x.p.s., t.g. and single crystal X-ray diffraction. The single crystal X-ray diffraction analysis reveals that compound (1) consists of the [Mo8O26]4− cluster as the structural motif covalently linked by benzimidazole molecules and protonated benzimidazole molecules as charge compensation cations. It is interesting that the benzimidazole molecules were synthesized from 1,2-phenylenediamine and oxalic acid. The [Mo8O26]4− polyoxoanions and organic ligands in compound (1) interact with each other via extensive hydrogen bonds to form a three-dimensional supramolecular framework.  相似文献   

19.
通过高温固相法对醋酸镧(C6H9O6La·xH2O)与高钼酸铵((NH46Mo7O24·4H2O)在一定条件下热解制备非Pt催化剂La2Mo2O7(La2O3-2MoO2)。进一步采用2种方法将La2Mo2O7与多壁碳纳米管(MWCNTs)进行复合,一种是将La2Mo2O7喷涂到MWCNTs表层之上得到La2Mo2O7/MWCNTs,另一种是将两者均匀混合掺杂得到La2Mo2O7@MWCNTs,再将上述2种复合材料应用于染料敏化太阳能电池对电极进行相应研究。通过扫描电子显微镜(SEM)表征了复合催化材料的微观形貌,X射线衍射(XRD)确定了微观结构。采用电流密度-光电压曲线、循环伏安,交流阻抗以及塔菲尔极化分析了材料的光电性能。实验结果表明在电解液I3-/I-中,基于La2Mo2O7/MWCNTs与La2Mo2O7@MWCNTs的对电极,相同的条件下在光电池中获得的光电转换效率分别为6.09%和4.84%,明显高于MWCNTs的3.94%和La2Mo2O7的0.87%。电极性能的提高可归因于La2Mo2O7复合催化剂相对大的比表面积和高导电性。  相似文献   

20.
通过高温固相法对醋酸镧(C6H9O6La·xH2O)与高钼酸铵((NH46Mo7O24·4H2O)在一定条件下热解制备非Pt催化剂La2Mo2O7(La2O3-2MoO2)。进一步采用2种方法将La2Mo2O7与多壁碳纳米管(MWCNTs)进行复合,一种是将La2Mo2O7喷涂到MWCNTs表层之上得到La2Mo2O7/MWCNTs,另一种是将两者均匀混合掺杂得到La2Mo2O7@MWCNTs,再将上述2种复合材料应用于染料敏化太阳能电池对电极进行相应研究。通过扫描电子显微镜(SEM)表征了复合催化材料的微观形貌,X射线衍射(XRD)确定了微观结构。采用电流密度-光电压曲线、循环伏安,交流阻抗以及塔菲尔极化分析了材料的光电性能。实验结果表明在电解液I3-/I-中,基于La2Mo2O7/MWCNTs与La2Mo2O7@MWCNTs的对电极,相同的条件下在光电池中获得的光电转换效率分别为6.09%和4.84%,明显高于MWCNTs的3.94%和La2Mo2O7的0.87%。电极性能的提高可归因于La2Mo2O7复合催化剂相对大的比表面积和高导电性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号