首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(o-phenylenediamine) (PoPD) hollow spheres (ca. 800 nm in outer diameter) were synthesized by a simple solution route using ammonium persulfate (APS) as the oxidizing agent, whereas PoPD nanofibers (0.5-2 μm in width and more than 100 μm in length) and gold nanoparticles (200-500 nm) were obtained when changing the oxidizing agent of APS to chlorauric acid (HAuCl4). The chemical structures of PoPD hollow spheres and nanofibers were characterized by FTIR and XRD spectra. When using HAuCl4 as the oxidizing agent, the products of PoPD nanofibers and gold nanoparticles could be separated by chemical methods. The monomer droplets were proposed to act as template to the formation of polymer hollow spheres while the oriented growth of polymer nanofibers might be catalyzed by gold nanoparticles.  相似文献   

2.
Mn3O4 Hausmanite nanoparticles were prepared in aqueous solution by using metallic salt and hydrazine as precursor and reducing agent, respectively. The crystallite sizes ranged from 10 to 20 nm and the particle diameter distribution was very narrow and estimated between 20 and 30 nm. Influence of some parameters such as temperature, time of reaction, surfactant nature was studied for a synthesis in an aqueous medium. The as-made manganese oxides particles could be dispersed in an organic solvent containing stabilizing agents, according to perform the synthesis in an H2O/n-hexan two-phase medium. These nanoparticles were characterized by X-ray diffraction, infrared spectroscopy, scanning and transmission electron microscopies and nitrogen absorption measurements.  相似文献   

3.
We developed a novel method for preparing poly(ethylene terephthalate)/BaSO4 nanocomposites, which were synthesized by in situ polymerization of terephthalic acid (TPA), ethylene glycol (EG) and BaSO4 nanoparticles prepared by reacting H2SO4 with Ba(OH)2 in ethylene glycol (EG). It was shown that the addition of BaSO4 would not influence the synthesis of PET. The structure of the nanocomposites was characterized by transmission electron microscopy (TEM), and the nanoscale dispersion of BaSO4 particles in the PET matrix was observed when the BaSO4 content is below 4 wt%. Moreover, the thermal properties of the nanocomposites were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The results suggest that the degree of dispersion of BaSO4 particles in the PET matrix has important effect on the thermal properties of the nanocomposites. The existence of BaSO4 nanoparticles enhances the crystallization rate of PET. Besides, it was found that the thermal stability of PET was improved by the addition of the BaSO4 nanoparticles.  相似文献   

4.
CdTe@Cu(OH)2 nanocomposites were synthesized in aqueous solution by a seed-mediated growth approach. The effect of refluxing time and the concentration of Cu2+ on the preparation of these samples were measured using UV-visible absorption and photoluminescence analysis. The emission peak of the synthesized nanocomposites (CdTe@Cu(OH)2) was shifted from 605 (CdTe seed) to 621 nm. The size of CdTe nanoparticles were averaged about 3.22 nm, and the CdTe@Cu(OH)2 nanocomposites were averaged as 5.19 nm. The synthesized CdTe@Cu(OH)2 nanocomposite were characterized with XRD, EDAX, TEM, FT-IR, EPR, and thermal analysis (TG/DTG curves). The results indicate that as-prepared nanoparticles with core/shell structure exhibit interesting optical properties.  相似文献   

5.
表面增强拉曼散射(SERS)被用于检测细菌芽抱中的一种重要的标志物吡啶2,6-羧酸(DPA).以聚乙烯吡啶烷酮(PVP)为粘合剂,将60 nm的金粒子组装到表面打磨光滑的金电极上,制备稳定、灵敏的SERS基底.通过不同pH值下吸附在金基底上的DPA的SERS特征,考察DPA分子吸附构型发生的变化,并分析酸根离子对其吸附...  相似文献   

6.
CTAB-Mn3O4 nanocomposites: Synthesis,NMR and low temperature EPR studies   总被引:1,自引:0,他引:1  
We are reporting on the synthesis of Mn3O4 nanoparticles and CTAB-Mn3O4 nanocomposites via a sonochemical route using MnCl2, ethanol, NaOH and CTAB. The crystalline phase was identified as Mn3O4. The crystallite size of the CTAB-Mn3O4 nanocomposite was identified as 13 ± 5 nm from X-ray line profile fitting and the particle size from TEM was 107.5 ± 1.4 nm. The interaction between CTAB and the Mn3O4 nanoparticles was investigated by FTIR and 1H NMR spectroscopies. Two different magnetic phase transitions were observed for both samples below the Curie temperature (43 °C) by using a low temperature Electron Paramagnetic Resonance (EPR) technique. Also we determined the effect of the capping with CTAB on the reduction in absorbed power.  相似文献   

7.
Magnetic CoFe2O4-functionalized graphene sheets (CoFe2O4-FGS) nanocomposites have been synthesized by hydrothermal treatment of inorganic salts and thermal exfoliated graphene sheets. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations show that cobalt ferrite nanoparticles with sizes of 10-40 nm are well dispersed on graphene sheets. OH was recognized as a tie to integrate the inorganic salts with the graphene sheets, which made reaction started and developed on the surface of graphene sheets and formed cobalt ferrite nanoparticles on graphene sheets. The adsorption kinetics investigation revealed that the adsorption of methyl orange from aqueous solution over the as-prepared CoFe2O4-FGS nanocomposites followed pseudo-second-order kinetic model and the adsorption capacity was examined as high as 71.54 mg g−1. The combination of the superior adsorption of FGS and the magnetic properties of CoFe2O4 nanoparticles can be used as a powerful separation tool to deal with water pollution.  相似文献   

8.
Reversibly photo-cross-linkable pH-responsive block copolymer poly(ethylene oxide)-b-poly((2-(diethylamino)ethyl methacrylate-co-4-methyl-[7-(methacryloyl)oxyethyloxy] coumarin)) (PEO-b-P(DEA-co-CMA)) was synthesized via atom transfer radical polymerization (ATRP). Block copolymer nanogels could be easily prepared by first photo-cross-linking of the micelles at pH > 7 and then adjusting the solution to pH < 7. The photo-cross-linking was proved to be reversibly controlled under alternative irradiation of UV light at 365 nm and 254 nm. As a result, the cross-linking degrees and sizes of the nanogels can be easily controlled by alternatively UV light irradiation. Finally, the nanogels can serve as nanoreactors for the synthesis of gold nanoparticles. The protonated DEA units were first coordinated with HAuCl4, and then the electrostatically bounded AuCl4− anions were reduced to gold nanoparticles by NaBH4. The nanogel-supported gold nanoparticles were used in chemical catalysis. The pH-responsive photo-cross-linked nanogels have been characterized using dynamic light scattering, transmission electron microscopy, UV-vis spectra and 1H NMR spectroscopy measurements, respectively.  相似文献   

9.
Au/SnO2 core-shell structure nanoparticles were synthesized using the microwave hydrothermal method. The optical and morphological properties of these particles were examined and compared with those obtained by the conventional hydrothermal method. In microwave preparation, the peak position of the UV-visible plasmon absorption band of Au nanoparticles was red-shifted from 520 to 543 nm, due to the formation of an SnO2 shell. An SnO2 shell formation was complete within 5 min. The thickness of the SnO2 shell was 10-12 nm, and the primary particle size of SnO2 crystallites was 3-5 nm. For the core-shell particles prepared by a conventional hydrothermal method, the shell formed over the entire synthesis period and was not as crystalline as those produced, using the microwave method. The relationship between the morphological and spectroscopic properties and the crystallinity of the SnO2 shell are discussed.  相似文献   

10.
Nanocrystalline lanthanum hexaboride (LaB6) with mean particle size of 30 nm has been successfully synthesized at 400 °C in an autoclave starting from metallic magnesium powder, NaBH4 and LaCl3. In this case, by using B2O3 instead of NaBH4, LaB6 nanocubes with mean size of ∼200 nm were formed at 500 °C. The X-ray diffraction (XRD) pattern can be indexed as cubic LaB6 with the lattice constant of a=4.151 Å for LaB6 nanoparticles and 4.154 Å for LaB6 nanocubes. An atomic ratio of La and B as 1:5.94 was determined from EDS for LaB6 nanoparticles. XPS data of LaB6 nanocubes indicate the atomic ratio of La to B as 1:5.95. Raman spectra indicate the formation of LaB6.  相似文献   

11.
Poly(vinyl phosphonic acid) (PVPA)-Fe3O4 nanocomposite is synthesized by the precipitation of Fe3O4 in the presence of PVPA. Structural, surface, morphological, thermal properties and conductivity characterization/evaluation of the nanocomposite were performed by XRD, FT-IR, TEM, TGA and conductivity measurements respectively. The capping of PVPA around the Fe3O4 nanoparticles was confirmed by FT-IR spectroscopy, the interaction being via bridging oxygens of the phosphate and the nanoparticle surface. The crystallite and particle size were obtained as 6 ± 2 and 8.7 ± 0.1 nm from XRD line profile fitting and TEM image analysis respectively, which reveal nearly single crystalline nature of the Fe3O4 nanoparticles. Magnetic characterization of the bulk magnetite and (PVPA)-Fe3O4 nanocomposite reveals that both are in the superparamagnetic state at room temperature. The average magnetic domain size of the nanoparticles has been calculated using the Langevin function, which was fitted to the measured M-H hysteresis curves as 7.6 nm for the nanocomposite. In the nanocomposite, the reduction is due to the adsorption of PVPA onto the magnetite surface, which cancels some of the free spins at the surface causing a magnetically dead layer. Analysis of the conductivity and permittivity measurements revealed the coupling of ionic and polymer segmental motions and strong temperature dependency in the nanocomposite.  相似文献   

12.
A microscale solid-phase extraction (SPE) method using alumina-coated iron oxide nanoparticles (Fe3O4@Al2O3 NPs) as the affinity adsorbent for glyphosate (GLY) and its major metabolite aminomethylphosphonic acid (AMPA) in aqueous solution is reported. One milligram of Fe3O4@Al2O3 NPs was employed to extract both analytes in 5 ml of aqueous solution. After 5 min extraction, magnetic NPs were isolated from sample solution by employing an external magnet. Followed by rinsing the NPs with 5 μl of 20 mM Na4P2O7 solution for 5 min, the extract was directly analyzed using the derivatization-free CE-electrochemiluminescence (CE-ECL) method. With a sample-to-extract volume ratio of 1000, the enrichment factors for GLY and AMPA were 460 and 64, respectively. The limits of detection (LODs) were 0.3 and 30 ng ml−1 for GLY and AMPA in water, respectively. The developed method was applied to the analysis of GLY in guava fruit. The LOD of GLY in guava was 0.01 μg g−1. Total analysis time including sample pretreatment, SPE and CE-ECL was less than 1 h.  相似文献   

13.
Synthesis of submicrometer crystalline particles of cobalt carbonate was achieved hydrothermally using different cobalt salts and urea with a molar ratio from 1:3 to 1:20 (cobalt salt:urea) in aqueous solutions at 160 °C for 24-36 h, in the presence of cetyltrimethylammonium bromide (CTAB) as a surfactant. Nanoparticles of Co3O4, with an average size from 30 to 39 nm, were obtained by thermal decomposition of CoCO3 samples at 500 °C for 3 h in an electrical furnace. The as-synthesized products were characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV-Vis spectra and thermal analysis. Studying the optical properties of the as-prepared cobalt oxide nanoparticles showed the presence of two band gaps, the values of which confirmed the semiconducting properties of the prepared Co3O4.  相似文献   

14.
Phosphomolybdate, H3PMo12O40, (PMo12)-doped-poly(3,4-ethylenedioxythiophene) (PEDOT) coated gold nanoparticles have been synthesized in aqueous solution by reduction of AuCl4 using hydroxymethyl EDOT as a reducing agent in the presence of polystyrene sulfonate and PMo12. The resulting PMo12-doped-PEDOT stabilized Au nanoparticles are water soluble and have been characterized by UV–visible spectroscopy, scanning electron microscopy and electrochemistry. Glassy carbon electrodes modified with these Au nanoparticles show excellent stability and catalytic activity towards the reduction of bromate in an aqueous electrolyte solution containing 10 mM H2SO4 and 0.1 M Na2SO4.  相似文献   

15.
Y2O3:Eu3+ (5 mol% Eu3+) and Y2O3:Eu3+ (5 mol% Eu3+) containing 1 mol% of Ag nanoparticles were prepared by heat treatment of a viscous resin obtained via citrate precursor. TEM and EDS analyses showed that Y2O3:Eu3+ (5 mol% Eu3+) is formed by nanoparticles with an average size of 12 nm, which increases to 30 nm when Ag is present because the effect of metal induced crystallization occurs. Ag nanoparticles with a size of 9 nm dispersed in Y2O3:Eu3+ (5 mol% Eu3+) were obtained and the surface plasmon effect on Ag nanoparticles was observed. The emission around 612 nm assigned to the Eu3+ (5D07F2) transition enhanced when the Ag nanoparticles were present in the Y2O3:Eu3+ luminescent material.  相似文献   

16.
Ming Hou  Zhiliang Jiang 《Talanta》2007,72(2):463-467
A gold-labeled immunoresonance scattering spectral probe for trace prealbumin (PA) was prepared by using gold nanoparticles in size of 9.0 nm to label goat anti-human prealbumin polyclonal antibody. The immune reaction between the gold-labeled antibody and prealbumin took place in pH 7.6 Na2HPO4-NaH2PO4 buffer solution. In the presence of polyethylene glycol PEG-10000, the labeled gold nanoparticles were released and aggregated which brought the resonance scattering intensity (IRS) at 580 nm to enhance greatly. The ΔIRS is proportional to the prealbumin concentration in the range from 16.67 to 666.67 ng/mL, with a detection limit of 4.1 ng/mL. This simple, sensitive and selective assay was applied to determination of prealbumin in human plasma, with satisfactory results.  相似文献   

17.
The tri-component copolymer poly(lactide-co-glycolide-co-caprolactone) (PLGC) was synthesized to prepare nanoparticles by the modified spontaneous emulsification solvent diffusion method (modified-SESD method); and the method was also modified by using the Tween60 instead of poly(vinyl alcohol) (PVA) as dispersing agent. The obtained nanoparticles have spherical shape and good particle distribution with mean size in the range from 100 to 200 nm. The in vitro degradation behaviour of PLGC nanoparticles was investigated. It was found that PLGC nanoparticles could remain stable during the degradation with no agglomeration. Compared with PLA and PLGA nanoparticles, the degradation rate of PLGC nanoparticles is faster. After 9 weeks of hydrolysis, the Mn of PLGC is less by 10% of the original Mn. The mean radius of the nanoparticles increases from 68 nm to 80 nm continuously during the first stage, and after 4 weeks of degradation, the particles' size decreases gradually from 80 nm to about 40 nm. These results suggest that the PLGC nanoparticles may show degradation-controlled drug release behaviour and seem to be a promising drug delivery system.  相似文献   

18.
Poly(3-thiophene acetic acid)/Fe3O4 nanocomposite is synthesized by the precipitation of Fe3O4 in the presence of poly(3-thiophene acetic acid) (P3TAA). Structural, surface, morphological, thermal properties and conductivity characterization/evaluation of the nanocomposite were performed by XRD, FT-IR, TEM, TGA, and conductivity measurements, respectively. The capping of P3TAA around Fe3O4 nanoparticles was confirmed by FT-IR spectroscopy, the interaction being via bridging oxygens of the carboxylate and the nanoparticle surface through bidentate binding. The crystallite and particle size were obtained as 9 ± 2 nm and 11 ± 1 nm from XRD line profile fitting and TEM image analysis, respectively, which reveal nearly single crystalline nature of Fe3O4 nanoparticles. Magnetization measurements reveal that P3TAA coated magnetite particles do not saturate at higher fields. There is no coercivity and remanence revealing superparamagnetic character. Magnetic particle size calculated from the theoretical fitting as 9.1 nm which coincides the values determined from TEM micrographs and XRD line profile fitting. The comparison to the TEM particle size reveals slightly modified magnetically dead nanoparticle surface.  相似文献   

19.
The linear polysilanes [{RR′2Si(CH2)ySi(n-hex)}x{HSi(n-hex)}1−x]n (1-4; R = 2-thienyl, R′ = H; R = Me, R′ = 2-thienyl; y = 2, 3) have been synthesized by hydrosilylation reaction between preformed poly(n-hexylsilane) and (2-thienyl)vinyldichlorosilane/allyl(2-thienyl)dichlorosilane/bis(2-thienyl)methylvinylsilane/allyl-bis(2-thienyl)methylsilane using AIBN as the free radical initiator. GPC analysis reveals a monomodal molecular weight distribution in each case with Mw = 2492-3280 and PDI = 1.18-1.44. The polysilane 1 (R = 2-thienyl, R′ = H, y = 2) acts as reducing agent towards silver tetrafluoroborate under mild conditions (cyclohexane, rt, 5 h) to afford spherical silver nanoparticles of size 8.4 ± 0.7 nm, as evident from the TEM and dynamic light scattering (DLS) studies. The silver nanoparticles in the polymer matrix exhibit surface plasmon absorption at 420 nm suggesting the donor-acceptor interaction between the thienyl group and the metal nanocluster surface. This stabilization effect provides long shelf life stability to the nanoparticles in solution with no sign of agglomeration even after three months.  相似文献   

20.
The thermal degradation of waste poly(methyl methacrylate) (PMMA) in the presence of ferric sulfate, cupric sulfate, aluminum sulfate, magnesium sulfate, and barium sulfate was studied by using thermogravimetric analysis (TGA) in air atmosphere. The values of apparent activation energies (Ea) calculated by Flynn-Wall-Ozawa method were found to be in the order of PMMA + Fe2(SO4)3 < PMMA + Al2(SO4)3 < PMMA + MgSO4 < PMMA + CuSO4 < PMMA + BaSO4 < PMMA. The mechanism of catalytic degradation of PMMA in presence of the sulfates was discussed and the results showed that the catalytic effects of sulfates have a relationship with the acidity of their respective metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号