首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Titanium(IV) citrate complexes with different anions Na3[Ti(H2cit)2(Hcit)] · 9H2O (1), K4[Ti(H2cit)(Hcit)2] · 4H2O (2), K5[Ti(Hcit)3] · 4H2O (3) and Na7[TiH(cit)3] · 18H2O (4) (H4cit = citric acid) were isolated in pure forms from the solutions of titanate and citrate at various pH values. X-ray structural analyses revealed the presence of a monomeric tricitrato titanium unit in the four complexes. Each Ti(IV) ion is coordinated octahedrally by the three citrate ligands in different protonated forms. The citrate ligand chelates bidentately to the titanium ion through its negatively charged α-alkoxy and α-carboxy groups. This is consistent with the large downfield 13C NMR shifts for the carbon atoms bearing the α-alkoxy and α-carboxy groups. The very strong hydrogen-bonds existing in the protonated and deprotonated β-carboxy groups may be the key factor for the stabilization of the titanium citrate complexes. When the pH value is lower than 7.0, 13C NMR spectra of 1:3 Ti:citrate solutions are similar to those of the titanium citrate complexes isolated at the corresponding pH values. The dissociation of free citrate increases with the rise of pH value. However, 13C NMR spectra of 1:3 Ti:citrate solutions indicate that there may exist different citrate titanium species when the pH value is higher than 7.0.  相似文献   

2.
A variety of monocyclopentadienyl alkoxo titanium dichloride and bisalkoxo titanium dichloride complexes have been prepared and characterized by spectroscopic techniques. The titanium derivatives containing both cyclopentadienyl and various alkoxo ligands [Ti(η5-C5H5)(OR)Cl2] (1-5) have been synthesized from the reaction of [Ti(η5-C5H5)Cl3] with 1 equivalent of the corresponding alcohol in THF in the presence of triethylamine (ROH = Adamantanol, 1R,2S,5R-(−)-menthol, 1S-endo-(−)-borneol, cis-1,3-(−)-benzylideneglycerol, 1,2:3,4-di-O-isopropylidene-α-d-galactopyranose). The bisalkoxo titanium dichloride derivatives [TiCl2(OR)2] (6-10) have been prepared by a redistribution reaction between Ti(OR)4 and TiCl4 compounds 6-8 (OR = Adamantanoxy, (1R,2S,5R)-(−)menthoxy, (1S-endo)-(−)-borneoxy) and by reaction of [Ti(OR)2(OPri)2]2 with CH3COCl compounds 9 and 10 (OR = 1,2:3,4-di-O-isopropylidene-α-d-galactopyranoxy, and 1,2:5,6-di-O-isopropylidene-α-d-glucofuranoxy). The molecular structures of 2 and 3 have been determined by single crystal X-ray diffraction studies.  相似文献   

3.
A series of mono-cationic dinuclear half sandwich ruthenium, rhodium and iridium metal complexes have been synthesized using ((pyridin-2-yl)methylimino)nicotinamide (L1) and ((picolinamido)phenyl)picolinamide (L2) ligands: [(η6-arene)2Ru2(μ-L1)Cl3]+ (arene = C6H6, 1; p-iPrC6H4Me, 2; C6Me6, 3), [(η5-C5Me5)2M2(μ-L1)Cl3]+ (M = Rh, 4; Ir, 5), and [(η6-arene)2Ru2(μ-L2)(μ-Cl)]+ (arene = C6H6, 6; p-iPrC6H4Me, 7; C6Me6, 8), [(η5-C5Me5)2M2(μ-L2)Cl2]+ (M = Rh, 9; Ir, 10). All the complexes have been isolated as their hexafluorophosphate salts and fully characterized by use of a combination of NMR and IR spectroscopy. The solid state structure of three representatives 4, 6 and 9 has been determined by X-ray crystallographic studies. Interestingly, in the molecular structure of 4, the first metal is bonded to two nitrogen atoms whereas the second metal center is coordinated to only one nitrogen atom with two terminal chloride ligands. Fascinatingly in the case of the complexes with the symmetrical ligand L2, both ruthenium centers having η6-arene groups are bonded to nitrogen atoms with a bridging chloride atom between the two metal centers, whereas the metals with η5-Cp∗ groups are bonded to the ligand N,O and N,N fashion.  相似文献   

4.
The hydrolysis of 2-phenylethyl β-d-glucopyranoside (3) was found to be partially inhibited by feeding with 2-phenyl-N-glucosyl-acetamidiumbromide (8), a β-glucosidase inhibitor, resulting in a decrease in the diurnal emission of 2-phenylethanol (2) from Rosa damascena Mill. flowers. Detection of [1,1,2,2′,3′,4′,5′,6′-2H8]-2 and [1,2,2′,3′,4′,5′,6′-2H7]-2 from R. ‘Hoh-Jun’ flowers fed with [1,1,2,2′,3′,4′,5′,6′-2H8]-3 suggested that β-glucosidase, alcohol dehydrogenase, and reductase might be involved in scent emission. Comprehensive GC-SIM analyses revealed that [1,2,2,2′,3′,4′,5′,6′-2H8]-2 and [1,2,2,2′,3′,4′,5′,6′-2H8]-3 must be biosynthesized from [1,2,2,2′,3′,4′,5′6′-2H8] l-phenylalanine ([2H8]-1) with a retention of the deuterium atom at α-position of [2H8]-1.  相似文献   

5.
Fluorotitanates (LH)2[TiF6nH2O (1: R = pyridine, n = 1, 2: R = 2-picoline, n = 2, 3: R = 2,6-lutidine, n = 0, 4: R = 2,4,6-collidine, n = 0) and (LH)[TiF5(H2O)] (3a: L = 2,6-lutidine) have been synthesized by the reaction of pyridine or corresponding methyl substituted pyridines and titanium dioxide dissolved in hydrofluoric acid. The crystal structures of ionic compounds 1, 2, 3, 3a and 4 have been determined by single-crystal X-ray diffraction analysis. The hydrogen bonding led to the formation of discrete (LH)2[TiF6] units (4), chains (1-3), and layers (3a). The additional π-π interactions present in 1, 2, and 4 results in chain structures of 1 and 4 and in a layer structure of 2. The [TiF6]2− and [TiF5(H2O)] anions were observed by 19F NMR spectroscopy in aqueous solutions of 1, 2, 3, 3a and 4.  相似文献   

6.
In this article, ten new coordination frameworks, namely, [Ni(H2O)6]·(L3) (1), [Zn(L3)(H2O)3] (2), [Cd(L3)(H2O)3]·5.25H2O (3), [Ag(L1)(H2O)]·0.5(L3) (4), [Ni(L3)(L1)] (5), [Zn(L3)(L1)0.5]·H2O (6), [Cd(L3)(L1)0.5(H2O)] (7), [CoCl(L3)0.5(L1)0.5] (8), [ZnCl(L3)0.5(L2)0.5] (9), and [CoCl(L3)0.5(L2)0.5] (10), where L1 = 1,1′-(1,4)-butanediyl)bis(imidazole), L2 = 1,1′-(1,4-butanediyl)bis(2-ethylbenzimidazole) and H2L3 = 3,3′-(p-xylylenediamino)bis(benzoic acid), have been synthesized by varying the metal centers and nitrogen-containing secondary ligands. These structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses and IR spectra. In 1, the L3 anion is not coordinated to the Ni(II) center as a free ligand. The Ni(II) ion is coordinated by water molecules to form the cationic [Ni(H2O)6]2+ complex. The hydrogen bonds between L3 anions and [Ni(H2O)6]2+ cations result in a three-dimensional (3D) supramolecular structure of 1. In compounds 2 and 3, the metal centers are linked by the organic L3 anions to generate 1D infinite chain structures, respectively. The hydrogen bonds between carboxylate oxygen atoms and water molecules lead the structures of 2 and 3 to form 3D supramolecular structures. In 4, the L3 anion is not coordinated to the Ag(I) center, while the L1 ligands bridge adjacent Ag(I) centers to give 1D Ag-L1 chains. The hydrogen bonds among neighboring L3 anions form infinite 2D honeycomb-like layers, in the middle of which there exist large windows. Then, 1D Ag-L1 chains thread in the large windows of the 2D layer network, giving a 3D polythreaded structure. Considering the hydrogen bonds between the water molecules and L3 anions, the structure is further linked into a 3D supramolecular structure. Compounds 5 and 7 were synthesized through their parent compounds 1 and 3, respectively, while 6 and 9 were obtained by their parent compound 2. In 5, the L3 anions and L1 ligands connect the Ni(II) atoms to give a 3D 3-fold interpenetrating dimondoid topology. Compound 6 exhibits a 3D three-fold interpenetrating α-Po network structure formed by L1 ligands connecting Zn-L3 sheets, while compound 7 shows a 2D (4,4) network topology with the L1 ligands connecting the Cd-L3 double chains. In compound 8, the L1 ligands linked Co-L3 chains into a 2D layer structure. Two mutual 2D layers interpenetrated in an inclined mode to generate a unique 3D architecture of 8. Compounds 9 and 10 display the same 2D layer structures with (4,4) network topologies. The effects of the N-containing ligands and the metal ions on the structures of the complexes 1-10 were discussed. In addition, the luminescent properties of compounds 2-4, 6, 7 and 9 were also investigated.  相似文献   

7.
Inorganic-organic hybrid frameworks, namely [Ce(H2O)3(pdc)]4[SiW12O40]·6H2O 1, [M(H2O)4(pdc)]4[SiW12O40]·2H2O (M=Ce for 2a, La for 2b, Nd for 2c; H2pdc=pyridine-2,6-dicarboxylic acid) were assembled through incorporation of Keggin-type heteropolyanion [SiW12O40]4− within the voids of lanthanides-pdc network as pillars or guests under hydrothermal condition. Single-crystal X-ray analyses of these crystals reveal that compound 1 presents 3D pillar-layered framework with the [SiW12O40]4− anions located on the square voids of the two-dimensional Ce-pdc bilayer. Compounds 2a-c are isostructural and constructed from 3D Ln-pdc-based metal-organic framework (MOF) incorporating noncoordinating guests Keggin structure [SiW12O40]4−. Solid-state properties of compounds 1 and 2a-c such as thermal stability and photoluminescence have been further investigated.  相似文献   

8.
A series of 3D heteropolymolybdates, (NH4)2{[M(H2O)3]2[TeMo6O24]}·H2O (M=Mn(1), Co(2), Ni(3), Cu(4), and Zn(5)) and [Ln(H2O)4]2[TeMo6O24]·3H2O (Ln=La(6), Ce(7), and Nd(8)), has been isolated from hydrothermal reactions and characterized by elemental analyses, IR spectra, X-ray crystallography and magnetic properties. Single-crystal X-ray diffraction analysis reveals that compounds 1-8 possess unusual (3,6)-connected networks constructed from Anderson-type anions [TeMo6O24]6− and transion metal or rare-earth metal cations. Compounds 1-5 are of highly symmetrical structures with pyrite-like topology in which [TeMo6O24]6− anions act as 6-connected sites and transition metal cations act as 3-connected sites. Compounds 6-8 crystallize in symmetrical space groups lower than that of 1-5 exhibiting rutile-like topology with [TeMo6O24]6− anions acting as 6-connected sites and rare-earth metal cations acting as 3-connected sites. The magnetic properties of 1-4 are also presented.  相似文献   

9.
Five novel coordination polymers, [Co(bpb)2Cl2] (1), [Co(bpb)2(SCN)2] (2), [Cd(H4bpb)0.5(dmf)(NO3)2] (3), [Cd2(H4bpb)Br4] (4), and [Hg2(H4bpb)I4] (5) [bpb=N,N′-bis(3-pyridylmethyl)-1,4-benzenedimethyleneimine, H4bpb=N,N′-bis(3-pyridylmethyl)-1,4-benzenedimethylamine], were synthesized and their structures were determined by X-ray crystallography. In the solid state, complex 1 is a 1D hinged chain, while 2 has 2D network structure with the ligand bpb serving as a bridging ligand using its two pyridyl N atoms. The imine N atoms keep free of coordination and bpb acts as a bidentate ligand in both 1 and 2. Complexes 3, 4, and 5 with reduced bpb ligand, i.e. H4bpb, show similar 2D network structure, in which ligand H4bpb serves as a tetradentate ligand. Thermogravimetric analyses for complexes 1-5 were carried out and found that they have high thermal stability. The magnetic susceptibilities of compounds 1, 2 were measured over a temperature range of 75-300 K.  相似文献   

10.
An experimental and computational study on the conformational preference of 1,n′-disubstituted ferrocenoyl amino acids and dipeptides is presented. Only l-amino acids were used for the synthesis of Fe[C5H4-CO-Met-Met-OMe]2 (4), but according to the X-ray structure a 4:1 mixture of l,d,M,d,l and l,d,M,l,l isomers is obtained (l describes amino acid chirality and M the helical chirality of the ferrocene core). This result is in agreement with IR and CD solution phase data and can be explained with a racemization by 1 M NaOH during the synthesis. In order to determine the relative stabilities of the different conformations, DFT calculations on model compounds Fe[C5H4-CO-Gly-NH2]2 (5) and Fe[C5H4-CO-Ala-OMe]2 (6) were performed using the B3LYP/LanL2DZ method with ECPs on the heavy atoms. Conformers 5A-5C with different hydrogen bond patterns have significantly different stabilities with a stabilization by about 30 kJ mol−1 per hydrogen bond. The “Herrick conformation” 5A with two hydrogen bonds is the most stable in the gas phase, in accordance with the solution and solid phase data. In contrast, only small energetic differences (less than 10 kJ mol−1) were calculated for conformers l,P,l-6A, l,P,d-6A and d,P,d-6A, which differ only in amino acid chirality.  相似文献   

11.
The reaction of sodium dimethyl(phenylsulfonyl)amidophosphate NaL (HL = C6H5SO2NHP(O)(OCH3)2) with Cu(NO3)2 · 6H2O and o-bpe (1,2-bis(pyridine-2-yl)ethane) in appropriate ratios, afford the formation of 1D coordination polymer [Cu(L)2 · o-bpe]n in good yield. The crystal structures of HL (1) and [Cu(L)2 · o-bpe]n (2) are reported. In the crystal package the molecules of 1 are linked by intermolecular hydrogen bonds formed by the phosphoryl oxygen atoms which serve as acceptors and nitrogen atoms of amide groups as donors. The crystal structure of 2 indicates the presence of unsaturated Cu(L)2 unit bridged by o-bpe ligand in the one-dimensional polymeric chain. The Cu(II) atoms have distorted 4 + 2 octahedral CuO4N2 environment formed by the oxygen atoms belonging to the sulfonyl and phosphoryl groups of two deprotonated chelate ligands and nitrogen atoms of the bridging o-bpe ligands.  相似文献   

12.
Reaction of bis(amide) sodium Na2[(1R,2R)-(−)-1,2-(NSiMe3)2-C6H10] (Na2[L1]) with Ti(OiPr)2Cl2 in different conditions gave mixed-ligand complexes [Ti(OiPr)Cl][L1] (1) or [Ti(OiPr)2Cl]2[L1] (2); 2 is a dinuclear titanium example in which Ti atoms are bridged by nitrogen and oxygen atoms simultaneously forming a distorted rhombic core. Reaction of the amine-amidinate ligand (1R,2R)-(−)-1-Li[NC(Ph)N(SiMe3)]-2-(NHSiMe3)-C6H10(Li[L2]) or rarely linked bis(amidinate) ligand Li2[(1R,2R)-(−)-1,2-{NC(Ph)N(SiMe3)}2-C6H10](Li2[L3]) with ZrCl4 yielded the unbridged and bridged bis(amidinate) complexes ZrCl2[L2]2 (3) and [ZrCl2(THF)][L3] (4), respectively; Moreover, the reaction of (1R,2R)-(−)-1-Li[NC(Ph)N(SiMe3)]-2-Li(NSiMe3)C6H10(Li2[L2]) with Ti(OiPr)2Cl2 gave a new type of tridentate amido-amidinate product [Ti(OiPr)2][L2] (6), which is a distinct model compared to [Ti(OiPr)2Cl][L2] (5) yielded from Li[L2]. All the products have been characterized by X-ray crystallography and the structural studies are presented detailedly comparing with relevant compounds.  相似文献   

13.
A new series of organo-titanium complexes have been prepared from the reaction between Ti(NMe2)4 and C2-symmetric ligands, (R,R)-11,12-bis(pyrrol-2-ylmethyleneamino)-9,10-dihydro-9,10-ethanoanthracene (1H2), and (R,R)-bis(diphenylthiophosphoramino)-9,10-dihydro-9,10-ethanoanthracene (2H2), (R,R)-11,12-bis(mesitylenesulphonylamino)-9,10-dihydro-9,10-ethanoanthracene (3H2) and (R,R)-bis(diphenylthiophosphoramino)-1,2-cyclohexane (4H2). Treatment of Ti(NMe2)4 with 1 equiv of 1H2 gives, after recrystallization from a benzene solution, the binuclear double helicate titanium amide (1)2[Ti(NMe2)2]2⋅(5) in 71% yield. While under similar reaction conditions, reaction of Ti(NMe2)4 with 1 equiv of 2H2, 3H2 or 4H2 gives, after recrystallization from a toluene or benzene solution, the mononuclear single helicate titanium amides (2)Ti(NMe2)2 (6), (3)Ti(NMe2)2 (7) and (4)Ti(NMe2)2 (8), respectively, in good yields. All new compounds have been characterized by various spectroscopic techniques, and elemental analyses. The solid-state structures of complexes 5-8 have further been confirmed by X-ray diffraction analyses. The titanium amides are active catalysts for the polymerization of rac-lactide, leading to the isotactic-rich polylactides.  相似文献   

14.
Palladium complexes composed of [Pd(Ln)2Cl2] (n = 1, 2, 3, 4, 6), [L5a]2[PdCl4] and [Pd(L5b)2], where L1 = 4,5-dihydro-2-phenyl-1H-imidazole (=2-phenyl-1H-imidazoline), L2 = 2-(o-fluorophenyl)-1H-imidazoline, L3 = 2-(o-methylphenyl)-1H-imidazoline, L4 = 2-(o-tert-butylphenyl)-1H-imidazoline, L5a = 2-(o-hydroxyphenyl)-1H-imidazolinium, L5b = 2-(1H-imidazolin-2-yl)phenolate, and L6 = 2-(o-methylphenyl)-1H-imidazole, were synthesized. Molecular structures of the isolated palladium complexes were characterized by single crystal X-ray diffraction analysis. The effect of ortho-substituents on the phenyl ring on trans-chlorine geometry was noted for complexes [Pd(L1)2Cl2] 1a and 1b, [Pd(L2)2Cl2] 2 and [Pd(L6)2Cl2] 6, whereas cis-chlorine geometry was observed for [Pd(L3)2Cl2] 3 and [Pd(L4)2Cl2] 4. PdCl2 reacts with 2-(o-hydroxyphenyl)-1H-imidazoline in DMF to give [L5a]+ and [L5b]- so that [L5a]2[PdCl4] 5a and [Pd(L5b)2] 5b were obtained. In complex 5b, as an N,O-bidentate ligand, two ligands L5b coordinated with the central Pd(II) ion in the trans-form. The coordination of PdCl2 with 2-(o-hydroxyphenyl)-1H-imidazolines in solution was investigated by NMR spectroscopy.  相似文献   

15.
Two new isotypic phosphates LiNi2H3(P2O7)2 (1) and LiCo2H3(P2O7)2 (2) have been hydrothermally synthesized and structurally characterized by the single-crystal X-ray diffraction technique. They crystallize in the monoclinic space group C2/c with the lattice: a=10.925(2) Å, b=12.774(3) Å, c=8.8833(18) Å, β=123.20(3)° for 1 and a=10.999(2) Å, b=12.863(3) Å, c=8.9419(18) Å, β=123.00(3)° for 2. The transition metal atoms are octahedrally coordinated, whereas the lithium and phosphorus atoms are all tetrahedrally coordinated. As the lithium-induced derivatives of MH2P2O7 (M=Ni, Co), 1 and 2 possess the same structure with MH2P2O7 in terms of topology, comprising the MO6 zigzag chains and P2O7 as the interchain groups. The magnetisms of 1 and 2 could be interpreted by adopting a quasi-one-dimensional (1D) zigzag chain model as that in their parent compounds: both 1 and 2 have ferromagnetic (FM) NiO6/CoO6 chains; 1 shows a FM cluster glass behavior at low temperatures, which is originated from the possible antiferromagnetic (AFM) next-nearest-neighbour intrachain interactions; 2 shows a AFM ordering at TN=2.6 K and a metamagnetic transition at HC=4.2 kOe at 1.8 K.  相似文献   

16.
Ming-Guo Liu  Yang-Gen Hu 《Tetrahedron》2008,64(38):9052-9059
Mono(iminophosphorane) 4 was selectively prepared from the reaction of 3,4-diaminothieno[2,3-b]thiophene 3 with excess triphenylphosphine, C2Cl6, and Et3N due to intramolecular double hydrogen bond formation. Mono(iminophosphorane) 4 reacted with aromatic isocyanates to give stable carbodiimides 8, which were further treated with aliphatic secondary or primary amines to give 2-amino substituted thieno[3′,2′:4,5]thieno[3,2-d]pyrimidin-4(3H)-ones 10 or 12 in the presence of a catalytic amounts of EtONa+. However, in the presence of a catalytic amounts of potassium carbonate, the carbodiimides 8 were transformed into previously unreported 5H-2,3-dithia-5,7-diaza-cyclopenta[c,d]indenes 13 via direct cyclization in high yields. The reaction of carbodiimides 8 with phenols in the presence of a catalytic amounts of potassium carbonate gave a mixture of 2-aryloxy substituted thieno[3′,2′:4,5]thieno[3,2-d]pyrimidin-4(3H)-ones 14 and 13. X-ray structure analysis of 10m supported the structure and the proposed reactivity of amino group.  相似文献   

17.
Combination of in-situ generated monocopperII-substituted Keggin polyoxoanions with copperII-organoamine complexes under hydrothermal conditions results in seven inorganic-organic composite polyoxotungstates [Cu(en)2(H2O)]2{[Cu(en)2][α-PCuW11O39Cl]}·3H2O (1), {[Cu(en)2(H2O)][Cu(en)2]2[α-PCuW11O39Cl]}·6H2O (2), {[Cu(en)2(H2O)]2[Cu(en)2][α-XCuW11O39]}·5H2O (3/4, X=SiIV/GeIV), {[Cu(deta)(H2O)2]2[Cu(deta)(H2O)][α-XCuW11O39]}·5H2O (5/6, X=GeIV/SiIV) and [Cu(dap)2]2{[Cu(dap)2]2[Cu(dap)2][α-PCuW11O39]2} (7) (en=ethylenediamine, dap=1,2-diaminopropane and deta=diethylenetriamine). 1 is an isolated structure whereas 2 is a 1-D chain structure, but both contain [α-PCuW11O39Cl]6− polyoxoanions. 3-6 contain the 1-D linear chains made up of [α-XCuW11O39]6− polyoxoanions in the pattern of -A-A-A- (A=[α-XCuW11O39]6−), while 7 demonstrates the first 1-D zigzag chain constructed from [α-PCuW11O39]210− polyoxoanions via [Cu(en)2]2+ bridges in the pattern of -A-B-A-B- (A=[α-PCuW11O39]210−, B=[Cu(en)2]2+). The successful syntheses of 1-7 can provide some experimental evidences that di-/tri-/hexa-vacant polyoxoanions can be transformed into mono-vacant Keggin polyoxoanions under hydrothermal conditions.  相似文献   

18.
Twelve new organotin complexes with 4-sulfanylbenzoic acid of two types: RnSn[S(C6H4COOH)]4−n (I) (n = 3: R = Me 1, n-Bu 2, Ph 3; PhCH24; n = 2: R = Me 5; n-Bu 6, Ph 7, PhCH28) and R3Sn(SC6H4COO)SnR3 · mEtOH (II) (m = 0: R = Me 9, n-Bu 10, PhCH212; m = 2: R = Ph 11), along with the 4,4′-bipy adduct of 9, [Me3Sn(SC6H4COO)SnMe3]2(4,4-bipy) 13, have been synthesized. The coordination behavior of 4-sulfanylbenzoic acid is monodentate in 1-8 by thiol S atom but not carboxylic oxygen atom. While, in 9-13 it behaves as multidenate by both thiol S atom and carboxylic oxygen atoms. The supramolecular structures of 6, 11 and 13 have been found to consist of 1D molecular chains built up by intermolecular O-H?O, C-H?O or C-H?S hydrogen bonds. The supramolecular aggregation of 7 is 2D network determined by two C-H?O hydrogen bonds. Extended intermolecular C-H?O interactions in the crystal lattice of 9 link the molecules into a 2D network.  相似文献   

19.
Phosphorous-bridged bisphenoxy titanium complexes were synthesized and their ethylene polymerization behavior was investigated. Bis[3-tert-butyl-5-methyl-2-phenoxy](phenyl)phosphine tetrahydrofuran titanium dichloride (4a) was obtained by treatment of 3 equiv of n-BuLi with bis[3-tert-butyl-2-hydroxy-5-methylphenyl](phenyl)phosphine hydrochloride salt (3a) followed by TiCl4(THF)2 in THF. THF-free complexes 5a-5d were synthesized more conveniently by the direct reaction of MOM-protected ligands (2a-2d) with TiCl4 in toluene. X-ray analysis of 4a revealed that the ligand is bonded to the octahedral titanium (IV) center in a facial fashion and two chlorine atoms possess cis-geometry. Complexes 4a and 5a-5d were utilized as catalyst precursors for ethylene polymerization. Complex 5c gave high molecular weight polyethylene (Mw = 1,170,000, Mw/Mn = 2.0) upon activation with Al(iBu)3/[Ph3C][B(C6F5)4] (TB). Ethylene polymerization activity of 5d activated with Al(iBu)3/TB reached 49.0 × 106 g mol (cat) −1 h−1.  相似文献   

20.
A general approach for the preparation of dinuclear η5- and η6-cyclic hydrocarbon platinum group metal complexes, viz. [(η6-arene)2Ru2(NNNN)Cl2]2+ (arene = C6H6, 1; p-iPrC6H4Me, 2; C6Me6, 3), [(η5-C5Me5)2M2(NNNN)Cl2]2+ (M = Rh, 4; Ir, 5), [(η5-C5H5)2M2(NNNN)(PPh3)2]2+ (M = Ru, 6; Os, 7), [(η5-C5Me5)2Ru2(NNNN)(PPh3)2]2+ (8) and [(η5-C9H7)2Ru2(NNNN)(PPh3)2]2+ (9), bearing the bis-bidentate ligand 1,2-bis(di-2-pyridylaminomethyl)benzene (NNNN), which contains two chelating di-pyridylamine units connected by an aromatic spacer, is reported. The cationic dinuclear complexes have been isolated as their hexafluorophosphate or hexafluoroantimonate salts and characterized by use of a combination of NMR, IR and UV-vis spectroscopic methods and by mass spectrometry. The solid state structure of three derivatives, [2][SbF6]2, [3][PF6]2 and [4][PF6]2, has been determined by X-ray structure analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号