首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A NOVEL APPROACH TO TESTING THE DYNAMIC SHEAR RESPONSE OF Ti-6Al-4V   总被引:1,自引:0,他引:1  
Modifications were made on the traditional split Hopkinson pressure bar (SHPB) system to conduct dynamic shear tests. The shear response of Ti-6Al-4V was acquired at a shear strain rate of 10 4 s 1 by using this modified apparatus. The geometry as well as the clamping mode of the double-notch specimen was optimized by commercial FEM software ABAQUS, and the feasibility of the experiment set-up was validated. A shear stress calibration coefficient of τ = 1.03 and a shear strain calibration coefficient of Γ = 0.50 were obtained.We have employed high-speed photography to record the deformation process, especially the initiation and propagation of adiabatic shear band (ASB), during the dynamic shear test. The frames show that the time duration from ASB initiation to its completion is less than 2 μs, from which we can estimate that the propagation speed of ASB within Ti-6Al-4V is more than 1250 m/s under such loading conditions. The temperature rise within ASB is also estimated to be T 2 ≈ 1460℃ based on energy balance. Such high temperature has led to softening of the material within the ASBs, and has intensified the shear localization and finally resulted in fracture of the material.  相似文献   

2.
开展了圆柱形爆炸容器逐级加载和破坏实验,根据容器最终的断裂面和微观形貌观测,提出了爆炸容器绝热剪切失效模式.建立了应变率-应变空间内的绝热剪切损伤演化模型,将绝热剪切不同演化阶段的临界状态与宏观的力学条件联系起来,并将这些力学临界条件作为动态失效准则引入到宏观计算程序中,模拟爆炸容器发生绝热剪切的的瞬态过程,模拟结果成...  相似文献   

3.
帽型试样动态绝热剪切破坏演化分析   总被引:1,自引:0,他引:1  
利用分离式霍普金森压杆加载Ta2钛合金扁平闭合帽形受迫剪切试样,结合数字图像相关法和“冻结”试样的微观金相观察,研究剪切区剪切应变的演化、绝热剪切带形成条件等。结果显示:受迫剪切试样在动态加载过程,剪切区剪切应变不断集中,形成绝热剪切带,裂纹沿绝热剪切带发展;随加载率提高,绝热剪切起始临界应变减小;进一步利用数字图像相关法DIC场应变分析及金相微观观测对比,利用卸载回复特性对绝热剪切带起始临界条件进行了讨论,计算的绝热剪切带起始时温升仅为86℃。材料软化可能不是绝热剪切带起始的控制条件,相反是由于绝热剪切带形成造成的应变高度集中发展导致温度急剧升高。  相似文献   

4.
绝热剪切带是金属材料在高应变率载荷下常见的一种失效模式。利用霍普金森压杆装置,对双相钢Fe-24.86Ni-5.8Al-0.38C不同微结构的帽形样品施加冲击载荷,研究它的动态剪切变形行为及微结构机理。先通过对固熔处理得到的粗晶态样品进行大应变冷轧获得冷轧态样品,再使用透射电子显微镜和扫描电子显微镜表征两种样品冲击前后微结构的变化差异。结果表明,双相钢FeNiAlC拥有较优异的动态剪切性能,剪切强度达1.3 GPa,均匀剪切应变达1.5。变形前,材料由奥氏体相和马氏体相构成,马氏体体积分数约为20%。变形过程由位错滑移和孪生变形主导,但因应变速率较高致使马氏体相变被抑制。不同微结构样品内均形成绝热剪切带,带内发生动态再结晶,形成超细晶粒,平均晶粒尺寸约300 nm,且剪切带内不发生相变;冷轧态剪切带宽度的实验值(14.6 μm)与理论计算值(12.3 μm)较好吻合,而粗晶态剪切带宽度的实验值(14.6 μm)与理论计算值(30 μm)相差甚远,初步分析可能是因为粗晶态样品应变较大基本不满足完全绝热的理论条件。在变形过程中,粗晶态因塑性变形做功产生的绝热温升高达720 K,而冷轧态的只有190 K。通过实验结果与热塑模型分析,得出绝热温升不是形成绝热剪切带的唯一因素,而应考虑材料的微观结构和局部化变形等的共同影响。  相似文献   

5.
A thermal-mechanical multiresolution continuum theory is applied within a finite element framework to model the initiation and propagation of dynamic shear bands in a steel alloy. The shear instability and subsequent stress collapse, which are responsible for dynamic adiabatic shear band propagation, are captured by including the effects of shear driven microvoid damage in a single constitutive model. The shear band width during propagation is controlled via a combination of thermal conductance and an embedded evolving length scale parameter present in the multiresolution continuum formulation. In particular, as the material reaches a shear instability and begins to soften, the dominant length scale parameter (and hence shear band width) transitions from the alloy grain size to the spacing between micro-voids. Emphasis is placed on modeling stress collapse due to micro-void damage while simultaneously capturing the appropriate scale of inhomogeneous deformation. The goal is to assist in the microscale optimization of alloys which are susceptible to shear band failure.  相似文献   

6.
不同加载状态下TA2钛合金绝热剪切破坏响应特性   总被引:2,自引:1,他引:1  
一般认为绝热剪切现象在宏观上表现为材料动态本构失稳,即热软化大于应变硬化.本文采用帽型受迫剪切试样研究TA2钛合金的动态力学特性和本构失稳过程.首先对剪切区加载应力状态进行理论和数值分析,通过合理设计帽型试样,剪切区变形可近似按剪切状态处理;结合二维数字图像相关法(two-dimensional digital image correlation,DIC-2D)直接测试试样剪切区应变演化,给出帽型受迫剪切实验的等效应力-应变响应曲线.进一步,利用Hopkinson压杆对TA2钛合金开展动态压缩及帽型剪切对比试验研究,比较压缩、剪切试验得到的等效应力-应变曲线,采用"冻结"试样方法分析试样中绝热剪切局域化演化过程,探讨不同加载状态下TA2钛合金的绝热剪切破坏现象及其动态力学响应特性.实验结果表明,在塑性变形初始阶段,动态压缩及剪切加载下的等效应力-应变曲线符合较好,但随塑性损伤发展及绝热剪切带形成,两者出现分离,表明损伤及绝热剪切演化过程与应力状态相关.剪切试样实验得到的本构"软化"特性能够反映绝热剪切带起始、破坏演化过程的力学响应特性,而在动态压缩实验中,即使试样中已出现双锥形的绝热剪切带及局部裂纹分布,其表观等效应力-应变曲线并不出现软化特征,动态压缩实验无法得到关于绝热剪切起始、发展以及破坏的本构软化响应特性.  相似文献   

7.
921A 钢纯剪切帽状试件绝热剪切变形的数值模拟   总被引:1,自引:0,他引:1  
结合相关实验,通过一系列基于921A 钢纯剪切帽状试件的SHPB数值模拟,研究试件的绝热剪 切行为,分析试件内绝热剪切带(ASB)的产生、发展以及相应的试件温度场分布。研究发现:ASB是通过剪 切区两端高温高应变的不稳定区域的扩展而形成;ASB的扩展速率与加载速率相关;在本文加载速率范围 内,ASB带宽无明显变化,均为约70m,基本与所设计的试件剪切区宽度一致;且对应所有加载速率,ASB 均为形变带。  相似文献   

8.
针对绝热剪切形成时由于变形高度局域化,塑性功产生的热导致局部高温,有时会伴随动态再结晶(DRX)的现象,采用一种考虑动态再结晶过程的绝热剪切破坏准则,利用有限元方法模拟了Arne工具钢平头弹冲塞Weldox 460 E钢靶板的实验.数值模拟揭示了剪切带产生、传播的过程,温度分布情况表明在绝热剪切带中具备动态再结晶形成的...  相似文献   

9.
We study the initiation and propagation of adiabatic shear bands (ASBs) in 11 homogeneous materials each modeled as microporous, isotropic and thermoelastoviscoplastic, and deformed in plane strain tension. The heat conduction in each material is assumed to be governed by a hyperbolic heat equation; thus thermal and mechanical waves propagate with finite speeds. The decrease in the thermophysical parameters due to the increase in porosity is considered. An ASB is assumed to initiate at a material point when the maximum shear stress there has dropped to 80% of its peak value for that material point and it is deforming plastically. An approximate solution of the coupled nonlinear partial differential equations subject to suitable initial and boundary conditions is found by the finite element method (FEM). In contrast to the Considerè and the Hart criterion, it is found that an ASB initiates when the axial load drops rapidly and not when it peaks. The refinement of the 40 × 40 uniform FE mesh to 120 × 120 uniform elements decreased the ASB initiation time by 2.1% while increasing the CPU time by a factor of ∼26. By locating points where the ASB has initiated we find its current length, width and speed. The 11 materials are ranked according to the time of initiation of an ASB under otherwise identical geometric and loading conditions with the same initial nonuniform porosity distribution. This ranking of materials is found to differ somewhat from that ascertained by Batra and Kim (1992) who studied simple shearing deformations, and by Batra et al. (1995) who analyzed three-dimensional torsional deformations of thin-walled tubular specimens. The average axial strain determined from the maximum axial load condition differs noticeably from that when an ASB initiates.  相似文献   

10.
使用二辊轧机对TA2工业纯钛进行多道次大应变冷轧处理,制备了冷轧总变形量为70%的TA2纯钛板。通过对冷轧TA2纯钛板进行500℃加热、不同保温时间的退火处理,获得了具有不同再结晶组织的钛板。基于帽形试样和限位环变形控制技术,在分离式霍普金森压杆装置上对不同再结晶组织的试样进行动态冲击冻结实验,结合光学显微镜和扫描电子显微镜表征试样冲击前后微观组织的变化,研究了再结晶组织对TA2纯钛绝热剪切行为的影响。结果表明,随着退火保温时间的延长,试样再结晶晶粒占比逐渐增大,晶粒分布由分散向局部聚集转变;在相同应变和应变率下,在所有试样中都观察到了绝热剪切带,再结晶晶粒占比高的试样更易诱发绝热剪切带中裂纹形核扩展。对比变形前后试样再结晶组织和几何必需位错变化,结合剪切区整体温升分析发现,再结晶晶粒作为材料软化点能够诱发剪切带的形成,而剪切带发展后期产生的绝热温升会促进剪切带内材料发生二次再结晶,提高剪切带内材料的韧性,延缓剪切裂纹的形成。  相似文献   

11.
金婷  杨平 《爆炸与冲击》2017,37(1):150-156
绝热剪切带是材料在高速变形时一种典型的破坏形式,为了更好地理解高速冲击过程中绝热剪切带的形成和扩展,基于Johnson-Cook本构模型,利用ANSYS/LS-DYNA软件对高锰钢帽型样品高速冲击过程的剪切行为进行了二维数值模拟。结果表明:横穿剪切带方向,应力应变分布都是剪切带中心最高,然后向两边逐渐降低,类似于高斯分布; 平行于剪切带方向,应力应变分布则是呈两端高中间低的特点。然后利用模拟的应力应变场分布确定了剪切带和裂纹形成及扩展方向,即从剪切区两端形成并向中间扩展;最后通过编辑软件的k文件直接得到了剪切带内部及周围形变影响区和基体的温度分布,其和应力应变场分布规律一致,结果与实验结果基本吻合。  相似文献   

12.
Scaling laws for adiabatic shear bands are used to parameterize a model that is suitable for introducing shear damage within engineering calculations. One-dimensional solutions to the governing equations for a single shear band provide laws that connect the driving deformation, the imperfections, and the physical characteristics of the material to the process of stress collapse [International Journal of Plasticity 8 (1992) 583, Mechanics of Materials 17 (1994) 215]. The current model uses homogeneous material response and the scaling laws to anticipate the correct timing beyond the maximum stress at which stress collapse should occur. The model is implemented into a finite element code for wave propagation and used in the analysis of boundary value problems that are dominated by shear failure. Finally, implications of the model for simulations of material failure are discussed.  相似文献   

13.
The heat generated from dissipative mechanisms during shearing and opening dominated dynamic fracture of polymethyl methacrylate and polycarbonate was measured with a remote sensing technique that utilizes the detection of infrared radiation. Significant heating was detected for both materials and both modes of fracture. In the shear dominated experiments, the temperature increase at the crack tip in polymethyl methacrylate was 85 K, the approximate increase necessary to reach the glass transition temperature. An adiabatic shear band followed by a dynamically propagating crack were observed during the shear dominated experiments using polycarbonate. The recorded shear band temperature increase was 45 K. This was followed by an additional 100 K temperature increase from the ensuing crack, raising the temperature above glass transition. The maximum temperature increase recorded for the opening mode experiments was 55 K for polymethyl methacrylate and 105 K for polycarbonate. The results of this study show that temperature effects are significant during the dynamic fracture of polymers. The effects are especially important in the shear dominated case where local temperatures approach or exceed the polymer glass transition temperature.  相似文献   

14.
Recent experiments have shown that shear band formation and rotation of structural elements at the mesolevel are fundamental to the development of plastic deformation and fracture of solids. Attention should be focused on a mesovolume of deformed material because the local stress and strain differ from those averaged at the macroscale. The discrete nature of the microshears and restricted deformation of the mesofragments should be accounted for. Rotation of the different mesofragments being parts of a grain, grains, grain conglomerates, etc., plays an important role in plasticity. Moreover, knowledge of the local parameters is needed for developing plasticity theories and fracture criteria. Models have been proposed within the framework of the physical mesomechanics. They take into account structural elements of different scales for simulating shear band nucleation and propagation in addition to mesofragment rotations. Calculations have been made for different mesovolumes under dynamic loading. In this work, a new criterion of plasticity is considered at the mesolevel. It accounts for the nucleation of plastic shears at the surfaces and interaction of structural elements. The numerical technique combines both the continuum mechanics approach and discrete cellular automata method.  相似文献   

15.
Ramp wave experiments on the Sandia Z accelerator provide a new approach to study the rapid compression response of materials at pressures, temperatures and stress or strain rates not attainable in conventional shock experiments. Due to its shockless nature, the ramp wave experiment is often termed as an isentropic (or quasi-isentropic) compression experiment (ICE). However, in reality there is always some entropy produced when materials are subjected to large amplitude compression even under shockless loading. The entropy production mechanisms that cause deformation to deviate from the isentropic process can be attributed to mechanical and thermal dissipations. The former is due to inelasticity associated with various deformation mechanisms and the rate effect that is inherent in all the deformation processes and the latter is due to irreversible heat conduction. The main purpose of the current study is to gain insights into the effects of ramp and shock loading on the entropy production and thermomechanical responses of materials. Another purpose is to investigate the role of heat conduction in the material response to both the non-steady ramp wave and steady shock.Numerical simulations are used to address the aforementioned research objectives. The thermomechanical response associated with a steady shock wave is investigated first by solving a set of nonlinear ordinary differential equations. Using the steady wave solutions as the reference, the material responses under non-steady ramp waves are then studied with numerical wave propagation simulation. It is demonstrated that the material response to ramp and shock loading is essentially a manifestation of the interaction between the time scale associated with the loading and the intrinsic time scales associated with mechanical deformation and heat transfer. At lower loading rates as encountered in ramp loading, the loading path is closer to an isentrope and results in lower entropy production. The reasonable ramp rate to obtain a quasi-isentropic state depends on the intrinsic time scales of the dissipation mechanisms which are strongly material dependent. Thus shockless loading does not necessarily produce an isentropic response. Between two equilibrium states, heat conduction was shown to have significant effect on the temperature history but it contributes little to the overall temperature change if the specific heat remains constant. It also affects the history of entropy, but only the irreversible part of heat conduction contributes to the net entropy change. The various types of thermomechanical responses of materials would manifest themselves more significantly in terms of the thermal history than the mechanical history. Thus temperature measurement appears to be an important experimental tool in distinguishing the various mechanisms for the thermomechancial responses of the materials.  相似文献   

16.
The present paper briefly reviews analytical studies of the evolution of thermoplastic shear band, i.e. emergence from uniform deformation, post-instability growth and late stage behaviour. The case studied is the simple shear of temperature and rate-dependent materials with heat transfer. Uniform mode exists before a critical state, if no heat flows out of testpiece. Upon reaching the critical state, bifurcation appears as a result of disturbances, which leads to instability and the formation of narrow shear band. Initially, the band, due to temperature disturbance, can shrink with increasing temperature and strain rate owing to unsteady flow. Then heat conduction dominates and causes the shear band to expand. The postmortem appearance of thermo-plastic shear band manifests itself as balance of plastic work rate and heat diffusion. Melting may also take place within the band.  相似文献   

17.
刘龙飞  刘炼煌  胡力  杨智程 《力学学报》2022,54(4):1051-1062
在外爆加载金属柱壳高速坍塌过程中, 发生塑性变形失稳形成的剪切带具有高度的自组织特征, 甚至出现剪切带排列的单旋现象—剪切带在顺时针和逆时针两个方向呈现一个方向占优的现象. 柱壳在坍塌时, 最大剪切应力位于柱壳内表面, 剪切带的形核及扩展行为受内表面材料介观状态的影响显著. 本文通过选材和控制柱壳加工工艺, 获得了内表面具有不同厚度塑性层的20钢柱壳, 采用厚壁圆筒实验技术, 研究了表面加工塑性层对金属柱壳绝热剪切带自组织单旋现象起始的影响规律及其物理机制. 研究结果表明, 金属柱壳内表面加工塑性层显著改变了试样剪切带的起始条件, 沿顺时针或逆时针方向排列的剪切带形核数量在总剪切带数量中所占比例取决于表面加工塑性层的厚度和晶粒取向, 具有单一晶粒拉伸方向的较厚塑性层样品更容易形成单向螺旋剪切带结构. 在相同变形条件下, 随着塑性层厚度增加, 剪切带平均形核速率和扩展速率增大, 剪切带平均间距减小. 结果可为理解金属柱壳在高速塌陷过程中绝热剪切带占优取向现象提供有价值的参考.   相似文献   

18.
The behavior of 1018 steel, 6061-T6 aluminum, and titanium 6%Al–4%V alloy during the dynamic punch test is investigated using the finite element method. Specifically, the possibility and effects of adiabatic shear localization and its role in burr formation are examined, and comparisons to experimental tests in the first part of this two part study are made. A maximum stress criterion involving strain and strain rate hardening and thermal softening is used to determine the occurrence of shear localization in the simulations. It is observed that adiabatic shear localization occurs in the simulations of the titanium alloy. This material exhibits narrow regions of concentrated shear strain during the deformation, and the shear localization criterion is satisfied in these regions. The strain is more widely distributed in the other two metals, and the same criterion is not satisfied. In the calculations of the shear localization criterion it is seen that strain rate hardening has a significant effect when compared to strain hardening and thermal softening. Also, contact between specimen and punch is lost around the center of the punch during operation. This loss of contact is important as it leads to higher stress concentrations at the punch corner and dishing of the blank.  相似文献   

19.
Shear band formation in materials with inhomogeneous and composite microstructures is influenced by factors that usually do not come into play in monolithic materials. Experiments and calculations have shown that inhomogeneities in material properties enhance the localization of deformation. This investigation concerns the propagation of shear bands in a two-phase tungsten composite under the conditions of nominally pure shear deformation. Finite element calculations are carried out to delineate the effects of different grain–matrix morphologies. In the numerical models, the initiation of shear bands is triggered by a notch, simulating the effect of defects such as microcracks and microvoids in materials. Calculations demonstrate that phase morphology, particle size and the relative location of initiation site have significant influences on the development of localized deformation. The work and energy evolutions are tracked for each constituent phase in the microstructures. In addition, the exchange of thermal energy through heat flow between the phases is analyzed. The results show that a strong correlation exists between the course of shear band propagation and the thermomechanical coupling between microscopic phases.  相似文献   

20.
Deformation fields near a crack tip are analyzed for a thermoviscoplastic body deformed either in an antiplane shear or in plane strain. The effects of inertia forces and heat conduction are considered, but those of material elasticity are neglected. By assuming that a shear band initiating from the crack-tip propagates in the direction of the maximum effective stress. It is found that a shear band propagates along the crack ligament in the body deformed in an antiplane shear. For a body undergoing plane strain deformations, the direction of the propagation of the shear band depends upon the mode-mixity parameter and agrees with that observed by Kalthoff.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号