首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We propose a deformation theory of strain gradient crystal plasticity that accounts for the density of geometrically necessary dislocations by including, as an independent kinematic variable, Nye's dislocation density tensor [1953. Acta Metallurgica 1, 153-162]. This is accomplished in the same fashion as proposed by Gurtin and co-workers (see, for instance, Gurtin and Needleman [2005. J. Mech. Phys. Solids 53, 1-31]) in the context of a flow theory of crystal plasticity, by introducing the so-called defect energy. Moreover, in order to better describe the strengthening accompanied by diminishing size, we propose that the classical part of the plastic potential may be dependent on both the plastic slip vector and its gradient; for single crystals, this also makes it easier to deal with the “higher-order” boundary conditions. We develop both the kinematic formulation and its static dual and apply the theory to the simple shear of a constrained strip (example already exploited in Shu et al. [2001. J. Mech. Phys. Solids 49, 1361-1395], Bittencourt et al. [2003. J. Mech. Phys. Solids 51, 281-310], Niordson and Hutchinson [2003. Euro J. Mech. Phys. Solids 22, 771-778], Evers et al. [2004. J. Mech. Phys. Solids 52, 2379-2401], and Anand et al. [2005. J. Mech. Phys. Solids 53, 1789-1826]) to investigate what sort of behaviour the new model predicts. The availability of the total potential energy functional and its static dual allows us to easily solve this simple boundary value problem by resorting to the Ritz method.  相似文献   

2.
Using a scaling relationship discussed in an earlier paper [Abraham, F. F., 2005. Unstable crack motion is predictable. J. Mech. Phys. Solids 53, 1071-1075], we find that the steady-state speed of a unidirectional crack moving in a hyperelastic solid equals the crack speed in a linear solid with our “effective spring constant”.  相似文献   

3.
Dynamic stability of a propagating crack   总被引:2,自引:0,他引:2  
In this work we investigate the stability of a straight two-dimensional dynamically propagating crack to small perturbation of its path. Willis and Movchan (J. Mech. Phys. Solids 43 (1995) 319; J. Mech. Phys. Solids 45 (1997) 591) constructed formulae for the perturbations of the stress intensity factors induced by a small three-dimensional dynamic perturbation of a nominally plane crack. Their solution is exploited here to derive equations for the in-plane and out-of-plane perturbations of the crack path making use of the Griffith fracture criterion and the principle of “local symmetry” (i.e the crack propagates so that local KII=0). We consider a crack propagating in a body loaded by a pair of point body forces and subjected to a remote uniaxial stress, aligned with the direction of the unperturbed crack. We assume that the loading follows the crack as the crack advances and is such that the unperturbed crack is subjected to Mode I loading. We perform an analysis of the stability of the dynamic crack in a similar way as in earlier work (Obrezanova et al., J. Mech. Phys. Solids 50 (2002) 57) on the quasistatically advancing crack. We present numerical results illustrating the influence of the crack velocity on the crack stability. Numerical computations of the possible crack paths have been performed which show that at velocities of crack propagation exceeding about one-third of the speed of Rayleigh waves the crack may admit one or more oscillatory modes of instability.  相似文献   

4.
The elastic problem of the contact between an axisymmetric indenter and a general anisotropic (21 independent elastic constants) half space has not been solved explicitly in closed form. Implicit methods to determine the indentation modulus originate from the work of Willis [J. Mech. Phys. Solids 14 (1966) 163]; and are now available for conical, parabolic and spherical indenters [Philos. Mag. A 81 (2001) 447; J. Mech. Phys. Solids 51 (2003) 1701]. The particular case of orthotropy has also been investigated [ASME J. Tribol. 115 (1193) 650, 125 (2003) 223]. This paper proposes an explicit solution for the indentation moduli of a transversely isotropic medium and a general orthotropic medium under rigid conical indentation in the three principal material symmetry directions. The half-space Green’s functions are interpolated from their exact extreme values, then integrated and finally simplified. The proposed closed form expressions are in very good agreement with the implicit solution schemes of [Philos. Mag. A 81 (2001) 447; J. Mech. Phys. Solids 51 (2003) 1701].  相似文献   

5.
In this comment, it is pointed out that the paper [Li and Mataga, 1996. J. Mech. Phys. Solids 44, 1799-1830], which presents original and valid solution strategy for an important problem of dynamic crack propagation in piezoelectric materials, contains ultimate quantitatively and qualitatively incorrect expressions, conclusions and plots due calculation errors. The correct calculations and corresponding correct conclusions and plots are presented.  相似文献   

6.
We present an asymptotic algorithm for analysis of a singularly perturbed problem in a domain containing an interfacial crack. The crack is assumed to be flat and its front, initially straight, is perturbed in the plane containing the crack. The aim of the work is to determine the asymptotic representation of the stress-intensity factors near the edge of the crack. Mathematically, the limit problem is reduced to the analysis of a matrix, 3×3, Wiener-Hopf problem, and its solution generates the “weight matrix-function” characterised by a special singular solution near the crack edge. The two-term asymptotic representation for the weight function components is required by the asymptotic algorithm, together with two-term asymptotics for stress components associated with the physical fields near the edge of the crack. The particular feature of the solution is the coupling between the normal opening mode (Mode-I), and the shear modes (Mode-II and Mode-III), and the oscillatory behaviour of certain stress components near the crack edge. Explicit asymptotic formulae for the stress-intensity factors are obtained at the edge of a “wavy crack” at an interface.  相似文献   

7.
The problem investigated in this paper is a mode II crack extending at a uniform intersonic speed in an otherwise unbounded elastic solid subjected to time dependent crack-face tractions. The fundamental solution for this problem is obtained analytically, which is then used to construct the general solution for an intersonic crack subjected to arbitrary time-dependent loading. For time-independent loading, this solution reduces to Huang and Gao’s [J. Appl. Mech 68 (2001) 169] fundamental solution. We have also studied two crack-face loadings that are of interest for engineering applications.  相似文献   

8.
Rice [J. Mech. Phys. Solids 26 (1978) 61] proposes a refined Griffith criterion, at any local crack front, where G is the Irwin's energy release rate, γ is the surface free energy and is the rate of crack advance. The refined version implies that the entropy production inequality should holds locally rather than globally from the thermodynamic point of view. Within the irreversible thermodynamic framework developed by Rice [J. Mech. Phys. Solids 19 (1971) 433; Constitutive Equations in Plasticity, 1975, p. 23], it is revealed in this paper that the entropy production inequality holds for each internal variable if its rate is a homogeneous function in its conjugate force. It is further shown that widely-used power laws for crack growth are just certain homogeneous kinetic rate laws, so it is concluded that the power laws directly lead to the refined Griffith criterion.  相似文献   

9.
Three-dimensional cubic unit cells containing 30 non-overlapping identical spheres randomly distributed were generated using a new, modified random sequential adsortion algorithm suitable for particle volume fractions of up to 50%. The elastic constants of the ensemble of spheres embedded in a continuous and isotropic elastic matrix were computed through the finite element analysis of the three-dimensional periodic unit cells, whose size was chosen as a compromise between the minimum size required to obtain accurate results in the statistical sense and the maximum one imposed by the computational cost. Three types of materials were studied: rigid spheres and spherical voids in an elastic matrix and a typical composite made up of glass spheres in an epoxy resin. The moduli obtained for different unit cells showed very little scatter, and the average values obtained from the analysis of four unit cells could be considered very close to the “exact” solution to the problem, in agreement with the results of Drugan and Willis (J. Mech. Phys. Solids 44 (1996) 497) referring to the size of the representative volume element for elastic composites. They were used to assess the accuracy of three classical analytical models: the Mori-Tanaka mean-field analysis, the generalized self-consistent method, and Torquato's third-order approximation.  相似文献   

10.
A variational model for fracture mechanics: Numerical experiments   总被引:1,自引:0,他引:1  
In the variational model for brittle fracture proposed in Francfort and Marigo [1998. Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46, 1319-1342], the minimum problem is formulated as a free discontinuity problem for the energy functional of a linear elastic body. A family of approximating regularized problems is then defined, each of which can be solved numerically by a finite element procedure. Here we re-formulate the minimum problem within the context of finite elasticity. The main change is the introduction of the dependence of the strain energy density on the determinant of the deformation gradient. This change requires new, more general existence and Γ-convergence results. The results of some two-dimensional numerical simulations are presented, and compared with corresponding simulations made in Bourdin et al. [2000. Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48, 797-826] for the linear elastic model.  相似文献   

11.
This paper is concerned with the development of an improved second-order homogenization method incorporating field fluctuations for nonlinear composite materials. The idea is to combine the desirable features of two different, earlier methods making use of “linear comparison composites”, the properties of which are chosen optimally from suitably designed variational principles. The first method (Ponte Castañeda, J. Mech. Phys. Solids 39 (1991) 45) makes use of the “secant” moduli of the phases, evaluated at the second moments of the strain field over the phases, and delivers bounds, but these bounds are only exact to first-order in the heterogeneity contrast. The second method (Ponte Castañeda, J. Mech. Phys. Solids 44 (1996) 827) makes use of the “tangent” moduli, evaluated at the phase averages (or first moments) of the strain field, and yields estimates that are exact to second-order in the contrast, but that can violate the bounds in some special cases. These special cases turn out to correspond to situations, such as percolation phenomena, where field fluctuations, which are captured less accurately by the second-order method than by the bounds, become important. The new method delivers estimates that are exact to second-order in the contrast, making use of generalized secant moduli incorporating both first- and second-moment information, in such a way that the bounds are never violated. Some simple applications of the new theory are given in Part II of this work.  相似文献   

12.
For any plane crack in an infinite isotropic elastic body subjected to some constant loading, Bueckner–Rice's weight function theory gives the variation of the stress intensity factors due to a small coplanar perturbation of the crack front. This variation involves the initial SIF, some geometry independent quantities and an integral extended over the front, the “fundamental kernel” of which is linked to the weight functions and thus depends on the geometry considered. The aim of this paper is to determine this fundamental kernel for the tunnel-crack. The component of this kernel linked to purely tensile loadings has been obtained by Leblond et al. [Int. J. Solids Struct. 33 (1996) 1995]; hence only shear loadings are considered here. The method consists in applying Bueckner–Rice's formula to some point-force loadings and special perturbations of the crack front which preserve the crack shape while modifying its size and orientation. This procedure yields integrodifferential equations on the components of the fundamental kernel. A Fourier transform in the direction of the crack front then yields ordinary differential equations, that are solved numerically prior to final Fourier inversion.  相似文献   

13.
The simplified three-parameter formulation of a piezoelectric medium proposed by Gao et al. [Gao, H.J., Zhang, T.Y., Tong, P., 1997. Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J. Mech. Phys. Solids 45, 491–510] is extended to a four-parameter modified model in order to point out the features of a steadily propagating Griffith crack. It is assumed that the crack is electro-elastically free and the medium is subjected to a generalized electro-mechanical loading applied at infinity. The complete solution is provided under impermeable and permeable boundary conditions and results are presented in order to show the main dynamical features.  相似文献   

14.
The indentation hardness-depth relation established by Nix and Gao [1998. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411-425] agrees well with the micro-indentation but not nano-indentation hardness data. We establish an analytic model for nano-indentation hardness based on the maximum allowable density of geometrically necessary dislocations. The model gives a simple relation between indentation hardness and depth, which degenerates to Nix and Gao [1998. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411-425] for micro-indentation. The model agrees well with both micro- and nano-indentation hardness data of MgO and iridium.  相似文献   

15.
The purpose of this paper is to further confirm some interpretations we made previously from materials or rock structure in term of the requirement of the introduction of complex critical exponents, where catastrophic brittle fracture is considered as a kind of second-order phase transition by analogy with percolation phenomenon. We propose here, using acoustic emission measurement data, a more complete experimental validation to support our previous conjecture that, “the higher the grain size and power supply, the longer range the interaction, and therefore the higher the imaginary part of complex critical exponents,” [Moura, A., Lei, X.L, Nishizawa, O., 2005. Prediction scheme for the catastrophic failure of highly loaded brittle materials or rocks. J. Mech. Phys. Solids 53(11), 2435-2455].  相似文献   

16.
The propagation of an interfacial crack front along the weak plane of a thin film stack is considered. A simple patterning technique is used to create a toughness contrast within this perfectly two-dimensional weak interface. The transparency of the specimens allows us to directly observe the propagation of the purely planar crack obtained during a DCB (double cantilever beam) test. The effect on the crack front morphology of macroscopic unidimensional patterns in the direction of propagation is studied. In these weak pinning conditions, the geometry of the front quantitatively agrees with the first-order expansion proposed by Gao and Rice [1989. First-order perturbation analysis of crack trapping by arrays of obstacles. J. Appl. Mech. 56, 828-836] which accounts for the effect of the interfacial crack front geometry on the stress intensity factor.  相似文献   

17.
The problem of a Dugdale-Barenblatt crack between dissimilar media is treated. The corresponding singular integral equation of the second kind is solved numerically. The crack propagation criteria is deduced using the revisited Griffith theory (Francfort and Marigo in J. Mech. Phys. Solids 46(8), 1319–1342, 1998). A parametric study is performed. An important result is the absence of the non physical phenomenon of overlapping of the crack faces near the ends observed in (England in J. Appl. Mech. 32(2), 400–402, 1965).  相似文献   

18.
In the small deformation range, we consider crystal and isotropic “higher-order” theories of strain gradient plasticity, in which two different types of size effects are accounted for: (i) that dissipative, entering the model through the definition of an effective measure of plastic deformation peculiar of the isotropic hardening function and (ii) that energetic, included by defining the defect energy (i.e., a function of Nye's dislocation density tensor added to the free energy; see, e.g., [Gurtin, M.E., 2002. A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50, 5–32]). In order to compare the two modellings, we recast both of them into a unified deformation theory framework and apply them to a simple boundary value problem for which we can exploit the Γ-convergence results of [Bardella, L., Giacomini, A., 2008. Influence of material parameters and crystallography on the size effects describable by means of strain gradient plasticity. J. Mech. Phys. Solids 56 (9), 2906–2934], in which the crystal model is made isotropic by imposing that any direction be a possible slip system. We show that the isotropic modelling can satisfactorily approximate the behaviour described by the isotropic limit obtained from the crystal modelling if the former constitutively involves the plastic spin, as in the theory put forward in Section 12 of [Gurtin, M.E., 2004. A gradient theory of small-deformation isotropic plasticity that accounts for the Burgers vector and for dissipation due to plastic spin. J. Mech. Phys. Solids 52, 2545–2568]. The analysis suggests a criterium for choosing the material parameter governing the plastic spin dependence into the relevant Gurtin model.  相似文献   

19.
In a previous paper, Zhou et al. [2006. A numerical methodology for investigating adiabatic shear band formation. J. Mech. Phys. Solids, 54, 904-926] developed a numerical method for analyzing one-dimensional deformation of thermoviscoplastic materials. The method uses a second order algorithm for integration along characteristic lines, and computes the plastic flow after complete localization with high resolution and efficiency. We apply this numerical scheme to analyze localization in a thermoviscoplastic material where multiple shear bands are allowed to form at random locations in a large specimen. As a shear band develops, it unloads neighboring regions and interacts with other bands. Beginning with a random distribution of imperfections, which might be imagined as arising qualitatively from the microstructure, we obtain the average spacing of shear bands through calculations and compare our results with previously existing theoretical estimates. It is found that the spacing between nucleating shear bands follows the perturbation theory due to Wright and Ockendon [1996. A scaling law for the effect of inertia on the formation of adiabatic shear bands. Int. J. Plasticity 12, 927-934], whereas the spacing between mature shear bands is closer to that predicted by the momentum diffusion theory of Grady and Kipp [1987. The growth of unstable thermoplastic shear with application to steady-wave shock compression in solids. J. Mech. Phys. Solids 35, 95-119]. Scaling laws for the dependence of band spacing on material parameters differ in many respects from either theory.  相似文献   

20.
The effect of physical aging on the mechanics of amorphous solids as well as mechanical rejuvenation is modeled with nonequilibrium thermodynamics, using the concept of two thermal subsystems, namely a kinetic one and a configurational one. Earlier work (Semkiv and Hütter in J Non-Equilib Thermodyn 41(2):79–88, 2016) is extended to account for a fully general coupling of the two thermal subsystems. This coupling gives rise to hypoelastic-type contributions in the expression for the Cauchy stress tensor, that reduces to the more common hyperelastic case for sufficiently long aging. The general model, particularly the reversible and irreversible couplings between the thermal subsystems, is compared in detail with models in the literature (Boyce et al. in Mech Mater 7:15–33, 1988; Buckley et al. in J Mech Phys Solids 52:2355–2377, 2004; Klompen et al. in Macromolecules 38:6997–7008, 2005; Kamrin and Bouchbinder in J Mech Phys Solids 73:269–288 2014; Xiao and Nguyen in J Mech Phys Solids 82:62–81, 2015). It is found that only for the case of Kamrin and Bouchbinder (J Mech Phys Solids 73:269–288, 2014) there is a nontrivial coupling between the thermal subsystems in the reversible dynamics, for which the Jacobi identity is automatically satisfied. Moreover, in their work as well as in Boyce et al. (Mech Mater 7:15–33, 1988), viscoplastic deformation is driven by the deviatoric part of the Cauchy stress tensor, while for Buckley et al. (J Mech Phys Solids 52:2355–2377, 2004) and Xiao and Nguyen (J Mech Phys Solids 82:62–81, 2015) this is not the case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号