首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this paper is to incorporate the effects of fabric and its evolution into the Dilatant Double Shearing Model [Mehrabadi, M.M., Cowin, S.C., 1978. Initial planar deformation of dilatant granular materials. J. Mech. Phys. Solids 26, 269–284] for granular materials in order to capture the anisotropic behavior and the complex response of granular materials in cyclic shear loading. An important consequence of considering the fabric is that one can have unequal shearing rates along the two slip directions. This property leads to the non-coaxiality of the principal axes of stress and strain rate, which is more appropriate for a material that exhibits initial and induced anisotropy. In addition, we employ a fabric-dependent elasticity tensor with orthotropic symmetry. The model developed in this paper also predicts one of the experimentally observed characteristics of granular materials: the gradual concentration of the contact normals towards the maximum principal stress direction.We implement the constitutive equations into ABAQUS/Explicit by writing a user material subroutine in order to predict the strength anisotropy of granular materials in a plane strain biaxial compression test and investigate the mechanical behavior of granular materials under the cyclic shear loading conditions. The predictions from this model show good quantitative agreement with the experiments of [Park, C.S., 1990. Anisotropy in deformation and strength properties of sands in plane strain compression, Masters Thesis, University of Tokyo; Park, C.S., Tatsuoka, F., 1994. Anisotropic strength and deformation of sands in plane strain compression. In: XIII ICSMFE, New Delhi, India; Okada, N., 1992. Energy dissipation in inelastic flow of cohesionless granular media. Ph.D. Thesis, University of California, San Diego].  相似文献   

2.
IntroductionAcompanionpaper [1 ]describedastressvector_basedconstitutivemodelforcohesionlesssoil.Themodelisbasedontheequivalentdecompositionoftheactioneffectofstressvectorforthemain .Thatis ,underplanestraincondition ,theactioneffectofstressvectorcanbeequi…  相似文献   

3.
The stress vector-based constitutive model for cohesionless soil, proposed by SHI Hong-yan et al., was applied to analyze the deformation behaviors of materials subjected to various stress paths. The result of analysis shows that the constitutive model can capture well the main deformation behavior of cohesionless soil, such as stress-strain nonlinearity, hardening property, dilatancy, stress path dependency, non-coaxiality between the principal stress and the principal strain increment directions, and the coupling of mean effective and deviatoric stress with deformation. In addition, the model can also take into account the rotation of principal stress axes and the influence of intermediate principal stress on deformation and strength of soil simultaneously. The excellent agreement between the predicted and measured behavior indicates the comprehensive applicability of the model. Biography: SHI Hong-yan (1962-), Associate Professor, Doctor  相似文献   

4.
This paper is dedicated to the understanding of the phenomena, which give rise to anisotropy and non-coaxiality in granular materials. In achieving three-dimensional numerical simulation under static condition of granular media, granular element method (GEM) is adopted in this study. The method has been incorporated into the so-called mathematical homogenization theory for quasi-static equilibrium problems, which enables us to obtain the macroscopic/phenomenological inelastic deformation response of a representative volume element (RVE). To examine the anisotropic macroscopic deformation properties of the assumed RVE, which is solved by granular element method (GEM), a series of numerical experiments involving the pure rotation of the principal stress axes are carried out, and its results are discussed in relation to induced anisotropy and non-coaxiality.  相似文献   

5.
A simple plasticity model for prediction of non-coaxial flow of sand   总被引:1,自引:0,他引:1  
A bounding surface plasticity model for non-coaxiality, another aspect of anisotropic behavior of sands under rotation of principal stress axes; is developed in the critical state framework. Numerous experimental evidences exist that corroborate dependence of plastic shear strain rate direction on inherent fabric anisotropy. At first, general expressions for plastic strain rate with respect to possible emerge of non-coaxial flow are obtained. Consequently, using an anisotropy state parameter that is specially developed for this model and accounts for the interaction between imposed loading and soil fabric; effect of anisotropy on plastic flow direction is taken into account. Besides, novel circumstances are proposed for plastic modulus and dilatancy under rotation of principal stress axes. Finally, it is shown that the model is able to simulate successfully the non-coaxial behavior of sands subjected to principal stress axes rotation.  相似文献   

6.
A three-dimensional micromechanical unit cell model for particle-filled materials is presented. The cell model is based on a Voronoi tessellation of particles arranged on a body-centered cubic (BCC) array. The three-dimensionality of the present cell model enables the study of several deformation modes, including uniaxial, plane strain and simple shear deformations, as well as arbitrary principal stress states.The unit cell model is applied to studies on the micromechanical and macromechanical behavior of rubber-toughened polycarbonate. Different load cases are examined, including plane strain deformation, simple shear deformation and principal stress states. For a constant macroscopic strain rate, the different load cases show that the macroscopic flow strength of the blend decreases with an increase in void volume fraction, as expected. The main mechanism for plastic deformation is broad shear banding across inter-particle ligaments. The distributed nature of plastic straining acts to reduce the amount of macroscopic strain softening in the blend as the initial void volume fraction is increased. In the case of plane strain deformation, the plastic flow is observed to initiate across inter-particle ligaments in the direction of constraint. This particular mode of deformation could not have been captured using a two-dimensional, plane strain idealization of cylindrical voids in a matrix.The potential for localized crazing and/or cavitation in the matrix is addressed. It is observed that the introduction of voids acts to relieve hydrostatic stress in the matrix material, compared to the homopolymer. It is also seen that the predicted peak hydrostatic stress in the matrix is higher under plane strain deformation than under triaxial tension (with equal lateral stresses), for the same macroscopic stress triaxiality.The effect of void volume fraction on the macroscopic uniaxial tension behavior of the different blends is examined using a Considère construction for dilatant materials. The natural draw ratio was predicted to decrease with an increase in void volume fraction.  相似文献   

7.
A theory for the initial planar deformation of dilatant granular materials based on a kinematic proposal of R. Butterfield and R.M. Harkness (1972) is presented. The theory introduces an additional parameter called the angle of dilatancy into the traditional structure of plasticity theories for granular materials and soils. When the angle of dilatancy is zero, the present theory reduces to the theory introduced by A.J.M. Spencer in 1964. When the angle of dilatancy is equal to the angle of internal friction, the present theory reduces to the planar form of the theory introduced by D. C. Drucker and W. Prager in 1952. The properties of the theory presented here include coincidence of the stress and velocity characteristics, realistic energy dissipation predictions, and, in general, non-coincidence of the principal axes of stress and strain-rate. However, the angle of dilatancy is assumed to be a constant in this analysis and it does not decrease to zero with increased monotonic shearing deformation as experiment requires that it should, the theory therefore being limited to the initial deformation of dilatant granular materials.  相似文献   

8.
The paper investigates the boundary effect on the behaviour of granular materials during plane strain compression using finite element method. A micro-polar hypoplastic constitutive model was used. The numerical calculations were carried out with different initial densities and boundary conditions. The behaviour of initially dense, medium dense and loose sand specimen with very smooth or very rough horizontal boundary was investigated. The formation of shear zones gave rise to different global and local stress and strain. Comparisons of the mobilized internal friction, dilatancy and non-coaxiality between global and local quantities were made.  相似文献   

9.
It is well known that geomaterials such as soils exhibit an increase in volume during shearing deformation, referred to as dilatancy. Dilatancy is a typical property of such granular materials as soils and is closely related to changes in the microstructure. Normally consolidated clay exhibits negative dilatancy or contractancy, namely, a decrease in volume during shearing. On the other hand, overconsolidated clay shows positive dilatancy, namely, an increase in volume during shearing. The aim of the present paper is to study the effects of the microstructure, such as dilatancy and permeability, on the strain localization of water-saturated clay using an elasto-viscoplastic constitutive model. Based on the non-linear kinematic hardening theory and a Chaboche type of viscoplasticity model, an elasto-viscoplastic model for both normally consolidated and overconsolidated clays is proposed; the model can address both negative and positive dilatancies. Firstly, the instability of the model under undrained creep conditions is analyzed in terms of the accelerating creep failure. The analysis shows that clay with positive dilatancy is more unstable than clay with negative dilatancy. Secondly, a finite element analysis of the deformation of water-saturated clay is presented with focus on the numerical results under plane strain conditions. From the present numerical analysis, it is found that both dilatancy and permeability prominently affect shear strain localization behavior.  相似文献   

10.
Strain localization is a well known phenomenon, generally associated with plastic deformation and rupture in solids, especially in geomaterials. In this process, deformation is observed to concentrate in narrow zones called shear bands. This phenomenon has been studied extensively in the last 20 years by different researchers, experimentally, theoretically and numerically. A criterion for the onset of localization can be predicted solely on the basis of the constitutive law of the material, using the so-called shear band analysis. This criterion gives the critical orientation, and the critical stress state and strain for a given loading history. An important point, already stressed by Vardoulakis in 1980, is that in particular, out-of-axes shear moduli play a central role in the criterion. These are the moduli involved in the response to a deviatoric stress increment with principal axes oriented at 45° from total stress principal axes. Out-of-axes shear moduli are difficult parameters to calibrate; common tests, with fixed principal stress and strain directions, do not provide any information on these moduli, as long as they remain homogeneous. Still, real civil engineering and environmental problems are definitely not simple axisymmetric triaxial tests; practical modeling involves complex stress paths, and need complex parameters to be calibrated. Only special tests, like compression–torsion on hollow cylinder tests, or even more complex tests can be used for shear moduli calibration. However, shear band initiation in homogeneous, fixed-axes tests does activate out-of-axes shear. Hence, it is natural that shear band analysis makes shear moduli enter into the analysis.Then, a typical inverse analysis approach can be used here: experimental observation of strain localization in triaxial tests can be used together with a proper shear band analysis for the model considered, in order to determine out-of-axes shear moduli.This approach has been used for a stiff marl in the framework of a calibration study on a set of triaxial tests. The steps of the method are presented, and the bifurcation surface in the stress space is exhibited.  相似文献   

11.
12.
剪胀性是包括岩土材料在内的摩擦性颗粒材料的重要特征之一,其形成机制与颗粒体系内部拓扑结构的演化有关.基于颗粒体系细观数据,可对颗粒体系内部的拓扑结构特征及演化进行分析,进而建立拓扑演化与宏观剪胀变形之间的联系.采用离散单元法,根据密实、中密和松散摩擦性颗粒材料双轴试验的宏微观数据,从拓扑参量演化及接触网络拓扑变化所引起...  相似文献   

13.
14.
A two-dimensional hexagonal foam cell model is used to derive analytic expressions for the bulk stress tensor and foam microstructure for any small homogeneous deformation. We show that calculations done for deformations where the principal axes of stress and strain coincide, such as in extension, are sufficient to provide all information about shear deformation. The stresses and foam structure for any given strain and initial cell orientation in shear bears a unique relation to a different strain and orientation in extension. Such a mapping is obtained using the assumption that the principal axes of strain and stress corotate with each other. This in turn implies that high gas fraction foams follow the Lodge-Meissner relation, i.e. the ratio of the normal-stress difference to the shear stress equals the shear strain. The spatially periodic structure of foam along with the fact that the cell centers move affinely with the bulk, makes the above assumption a justifiable one.  相似文献   

15.
This paper presents a novel, yet thermodynamically consistent, model of the isothermal compaction of loose granular material based on the principle of maximum dissipation rate. The method is first tested out on a simple version of the Bingham model and a hard particle model of rate-independent granular flow where it is seen that only the dissipation function and dilatancy rule are required in either case and the procedures are identical. This hard particle model is subsequently modified by the introduction of damage. Yield surface and flow rules are produced that are broadly in accordance with experimental findings. The key to the above modification is the concept of a dilatancy rule with two contributions. (1) A shear induced negative dilatancy, where any shear deformation has a tendency to produce densification. (2) Under many circumstances, this is countered by positive dilatancy such as at the critical state where the two mechanisms balance. This modification uses the idea that the first contribution is encouraged by microscopic damage local to the particle contacts that might permit compaction to occur under hydrostatic pressure alone. A mechanism is postulated whereby shear stresses operating at the microscopic level, while cancelling out at the macroscopic level, might occur with low levels of damage but produce no overall shear strains.  相似文献   

16.
Corotational rates in constitutive modeling of elastic-plastic deformation   总被引:1,自引:0,他引:1  
The principal axes technique is used to develop a new hypoelastic constitutive model for an isotropic elastic solid in finite deformation. The new model is shown to produce solutions that are independent of the choice of objective stress rate. In addition, the new model is found to be equivalent to the isotropic finite elastic model; this is essential if both models describe the same material.

The new hypoelastic model is combined with an isotropic flow rule to form an elastic-plastic rate constitutive equation. Use of the principal axes technique ensures that the stress tensor is coaxial with the elastic stretch tensor and that solutions do not depend on the choice of objective stress rate. The flow rule of von Mises and a parabolic hardening law are used to provide an example of application of the new theory. A solution is obtained for the prescribed deformation of simple rectilinear shear of an isotropic elastic and isotropic elastic-plastic material.  相似文献   


17.
In this paper a constitutive model for rigid-plastic hardening materials based on the Hencky logarithmic strain tensor and its corotational rates is introduced. The distortional hardening is incorporated in the model using a distortional yield function. The flow rule of this model relates the corotational rate of the logarithmic strain to the difference of the Cauchy stress and the back stress tensors employing deformation-induced anisotropy tensor. Based on the Armstrong–Fredrick evolution equation the kinematic hardening constitutive equation of the proposed model expresses the corotational rate of the back stress tensor in terms of the same corotational rate of the logarithmic strain. Using logarithmic, Green–Naghdi and Jaumann corotational rates in the proposed constitutive model, the Cauchy and back stress tensors as well as subsequent yield surfaces are determined for rigid-plastic kinematic, isotropic and distortional hardening materials in the simple shear deformation. The ability of the model to properly represent the sign and magnitude of the normal stress in the simple shear deformation as well as the flattening of yield surface at the loading point and its orientation towards the loading direction are investigated. It is shown that among the different cases of using corotational rates and plastic deformation parameters in the constitutive equations, the results of the model based on the logarithmic rate and accumulated logarithmic strain are in good agreement with anticipated response of the simple shear deformation.  相似文献   

18.
颗粒摩擦对颗粒材料剪切行为影响的试验研究   总被引:2,自引:0,他引:2  
通过对一种类似于土的颗粒材料--玻璃珠开展一系列室内直剪试验,研究颗粒间摩擦对颗粒材料剪切行为的影响. 试验一共考虑了4种不同的摩擦情况:干燥状态、用水浸润状态、完全淹没在水中和用油浸润状态. 分析试验结果发现,与干燥状态试样相比,用油浸润能明显降低试样的剪胀性和抗剪强度,而用水浸润和淹没在水中的方法没有产生显著的影响. 此外,通过在剪胀关系式中引入可变剪胀系数来考虑颗粒摩擦对颗粒材料剪胀性的影响,并从颗粒滑动与滚动的细观机理上初步解释了颗粒滑动摩擦角对临界状态摩擦角的影响规律.  相似文献   

19.
This paper is devoted to the formulation of a micromechanics-based constitutive model for granular materials under relatively low confining pressure. The constitutive formulation is performed within the general framework of homogenization for granular materials. However, new rigorous stress localization laws are proposed. Some local constitutive relations are established under the consideration of irreversible thermodynamics. Macroscopic plastic deformation is obtained by considering local plastic sliding in a limit number of families of contact planes. The plastic sliding at each contact plane is described by a non-associated plastic flow rule, taking into account pressure sensitivity and normal dilatancy. Nonlinear elastic deformation related to progressive compaction of contacts is also taken into account. Material softening is described by involving damage process related to degradation of microstructure fabric. The proposed model is applied to some typical granular materials (sands). The numerical predictions are compared with experimental data.  相似文献   

20.
超弹性橡胶材料的改进Rivlin模型   总被引:1,自引:0,他引:1  
讨论了不可压缩橡胶材料的超弹性唯象本构模型。针对典型实验,给出选择应变能函数的原则。从物理机理上,分析了Neo-Hookean模型、Mooney模型、三阶Rivlin模型及Ogden模型的优缺点。在此基础上,将Rivlin模型改进成为 ,这种新形式具有三个优点:①若取前三项(N=1),则其结果与不可压缩线弹性的应变能相等,能够近似满足剪切的线性关系,但拉伸及压缩的线性关系是精确满足的。②当N≥2时,简单剪切中的应变能及剪应力τxy在小应变情况下是以剪应变γxy为等比的多项式展开;而Rivlin模型只能保证简单剪切实验中的应变能及剪应力τxy是以(γxy)2为等比的级数展开的形式,当取前两项的情况下,Rivlin模型只能精确保证常剪切,拉伸及压缩的线性关系无法得到保证。针对典型实验数据,若取同阶次多项式,本文模型的同类实验数据预测及不同类实验数据间相互预测的精度都比Rivlin模型的高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号