首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The primary and secondary creep behavior of single crystals is observed by a material model using evolution equations for dislocation densities on individual slip systems. An interaction matrix defines the mutual influence of dislocation densities on different glide systems. Face-centered cubic (fcc), body-centered cubic (bcc) and hexagonal closed packed (hcp) lattice structures have been investigated. The material model is implemented in a finite element method to analyze the orientation dependent creep behavior of two-phase single crystals. Three finite element models are introduced to simulate creep of a γ′ strengthened nickel base superalloy in 〈1 0 0〉, 〈1 1 0〉 and 〈1 1 1〉 directions. This approach allows to examine the influence of crystal slip and cuboidal microstructure on the deformation process.  相似文献   

2.
An essential work on the constitutive modeling of rolled sheet metals is the consideration of hardening-induced anisotropy. In engineering applications, we often use testing results of four specified experiments, three uniaxial-tensions in rolling, transverse and diagonal directions and one equibiaxial-tension, to describe the anisotropic features of rolled sheet metals. In order to completely take all these experimental results, including stress-components and strain-ratios, into account in the constitutive modeling for presenting hardening-induced anisotropy, an appropriate yield model is developed. This yield model can be characterized experimentally from the offset of material yield to the end of material hardening. Since this adaptive yield model can directly represent any subsequent yielding state of rolled sheet metals without the need of an artificially defined “effective stress”, it makes the constitutive modeling simpler, clearer and more physics-based. This proposed yield model is convex from the initial yield state till the end of strain-hardening and is well-suited in implementation of finite element programs.  相似文献   

3.
Conventional isotropic hardening models constrain the shape of the yield function to remain fixed throughout plastic deformation. However, experiments show that hardening is only approximately isotropic under conditions of proportional loading, giving rise to systematic errors in calculation of stresses based on models that impose the constraint. Five different material data for aluminum and stainless steel alloys are used to calibrate and evaluate five material models, ranging in complexity from a von Mises’ model based on isotropic hardening to a non- associated flow rule (AFR) model based on anisotropic hardening. A new model is described in which four stress–strain functions are explicitly integrated into the yield criterion in closed form definition of the yield condition. The model is based on a non-AFR so that this integration does not affect the accuracy of the plastic strain components defined by the gradient of a separate plastic potential function. The model not only enables the elimination of systematic errors for loading along the four loading conditions, but also leads to a significant reduction of systematic errors in other loading conditions to no higher than 1.5% of the magnitude of the predicted stresses, far less that errors obtained under isotropic hardening, and at a level comparable to experimental uncertainty in the stress measurement. The model is expected to lead to a significant improvement in stress prediction under conditions dominated by proportional loading, and this is expected to directly improve the accuracy of springback, tearing, and earing predictions for these processes. In addition, it is shown that there is no consequence on MK necking localization due to the saturation of the yield surface in pure shear that occurs with the aluminum alloys using the present model.  相似文献   

4.
On the effective stress in unsaturated porous continua with double porosity   总被引:3,自引:0,他引:3  
Using mixture theory we formulate the balance laws for unsaturated porous media composed of a double-porosity solid matrix infiltrated by liquid and gas. In this context, the term ‘double porosity’ pertains to the microstructural characteristic that allows the pore spaces in a continuum to be classified into two pore subspaces. We use the first law of thermodynamics to identify energy-conjugate variables and derive an expression for the ‘effective’, or constitutive, stress that is energy-conjugate to the rate of deformation of the solid matrix. The effective stress has the form , where σ is the total Cauchy stress tensor, B is the Biot coefficient, and is the mean fluid pressure weighted according to the local degrees of saturation and pore fractions. We identify other emerging energy-conjugate pairs relevant for constitutive modeling of double-porosity unsaturated continua, including the local suction versus degree of saturation pair and the pore volume fraction versus weighted pore pressure difference pair. Finally, we use the second law of thermodynamics to determine conditions for maximum plastic dissipation in the regime of inelastic deformation for the unsaturated two-porosity mixture.  相似文献   

5.
This work proposes a model for granular deformation that predicts the stress and velocity profiles in well-developed dense granular flows. Recent models for granular elasticity [Jiang, Y., Liu, M., 2003. Granular elasticity without the Coulomb condition. Phys. Rev. Lett. 91, 144301] and rate-sensitive fluid-like flow [Jop, P., Forterre, Y., Pouliquen, O., 2006. A constitutive law for dense granular flows. Nature 441, 727] are reformulated and combined into one universal elasto-plastic law, capable of predicting flowing regions and stagnant zones simultaneously in any arbitrary 3D flow geometry. The unification is performed by justifying and implementing a Kröner–Lee decomposition, with care taken to ensure certain continuum physical principles are necessarily upheld. The model is then numerically implemented in multiple geometries and results are compared to experiments and discrete simulations.  相似文献   

6.
This article is focused on the identification of the size of the representative volume element (RVE) in linear elastic randomly structured polycrystals made up of cubic single crystals. The RVE is approached by setting up stochastic Dirichlet and Neumann boundary value problems consistent with the Hill(-Mandel) macrohomogeneity condition. Within this framework we introduce a scaling function that relates the single crystal anisotropy to the scale of observation. We derive certain exact characteristics of the scaling function and postulate others based on detailed calculations on copper, lithium, tantalum, magnesium oxide and antimony-yttrium. In deriving the above, we make use of the fact that cubic crystals and polycrystals have a uniquely determined scale-independent bulk modulus. It turns out that the scaling function is exact in the single crystal anisotropy. A methodology to develop a material selection diagram that clearly separates the microscale from the macroscale is proposed. The proposed scaling function not only bridges the length scales but also unifies the treatment of a wide spectrum of cubic crystals. Although the scope of this article is restricted to aggregates made up of cubic-shaped and cubic-symmetry single crystals, the concept of the scaling function can be generalized to other crystal shapes and classes as well as to scaling of other elastic/inelastic properties.  相似文献   

7.
    
Computational models of the brain rely on accurate constitutive relationships to model the viscoelastic behavior of brain tissue. Current viscoelastic models have been derived from experiments conducted in a single direction at a time and therefore lack information on the effects of multiaxial loading. It is also unclear if the time-dependent behavior of brain tissue is dependent on either strain magnitude or the direction of loading when subjected to tensile stresses. Therefore, biaxial stress relaxation and cyclic experiments were conducted on corpus callosum tissue isolated from fresh ovine brains. Results demonstrated the relaxation behavior to be independent of strain magnitude, and a quasi-linear viscoelastic (QLV) model was able to accurately fit the experimental data. Also, an isotropic reduced relaxation tensor was sufficient to model the stress-relaxation in both the axonal and transverse directions. The QLV model was fitted to the averaged stress relaxation tests at five strain magnitudes while using the measured strain history from the experiments. The resulting model was able to accurately predict the stresses from cyclic tests at two strain magnitudes. In addition to deriving a constitutive model from the averaged experimental data, each specimen was fitted separately and the resulting distributions of the model parameters were reported and used in a probabilistic analysis to determine the probability distribution of model predictions and the sensitivity of the model to the variance of the parameters. These results can be used to improve the viscoelastic constitutive models used in computational studies of the brain.  相似文献   

8.
A micromechanical theory is formulated for quasi-static deformation of granular materials, which is based on information theory. A reasoning is presented that leads to the definition of an information entropy that is appropriate for quasi-static deformation of granular materials. This definition is based on the hypothesis that relative displacements at contacts with similar orientations are independent realisations of a random variable. This hypothesis is made plausible based on the results of Discrete Element simulations. The developed theory is then used to predict the elastic behaviour of granular materials in terms of micromechanical quantities. The case considered is that of two-dimensional assemblies consisting of non-rotating particles with an elastic contact constitutive relation. Applications of this case are the initial elastic (small-strain) deformation of granular materials. Theoretical results for the elastic moduli, relative displacements, energy distribution and probability density functions are compared with results obtained from the Discrete Element simulations for isotropic assemblies with various average numbers of contacts per particle and various ratios of tangential to normal contact stiffness. This comparison shows that the developed information theory is valid for loose systems, while a theory based on the uniform-strain assumption is appropriate for dense systems.  相似文献   

9.
10.
A formulation of a constitutive behaviour law is proposed for hyperelastic materials, such that damage induced anisotropy can be accounted for continuously. The full-network approach with directional damage is adopted as a starting point. The full-network law with elementary strain energy density based on the inverse Langevin is chosen as a reference law which is cast into the proposed framework. This continuum formalism is then rewritten using spherical harmonics to capture damage directionality. The proposed formalism allows for an efficient (and systematic) expansion of complex non-linear anisotropic constitutive laws. A low order truncated expression of the resulting behaviour is shown to reproduce accurately the stress-strain curves of the exact behaviour laws.  相似文献   

11.
The bi-axial experimental equipment [Flores, P., Rondia, E., Habraken, A.M., 2005a. Development of an experimental equipment for the identification of constitutive laws (Special Issue). International Journal of Forming Processes] developed by Flores enables to perform Bauschinger shear tests and successive or simultaneous simple shear tests and plane strain tests. Flores investigates the material behavior with the help of classical tensile tests and the ones performed in his bi-axial machine in order to identify the yield locus and the hardening model. With tests performed on one steel grade, the methods applied to identify classical yield surfaces such as [Hill, R., 1948. A theory of the yielding and plastic flow of anisotropic materials. Proceedings of the Royal Society of London A 193, 281–297; Hosford, W.F., 1979. On yield loci of anisotropic cubic metals. In: Proceedings of the 7th North American Metalworking Conf. (NMRC), SME, Dearborn, MI, pp. 191–197] ones as well as isotropic Swift type hardening, kinematic Armstrong–Frederick or Teodosiu and Hu hardening models are explained. Comparison with the Taylor–Bishop–Hill yield locus is also provided. The effect of both yield locus and hardening model choices is presented for two applications: plane strain tensile test and Single Point Incremental Forming (SPIF).  相似文献   

12.
13.
A constitutive model is developed for the high-rate deformation of an aggregate comprising of mono-sized spherical particles with a view to developing an understanding of dynamic soil-structure interactions in landmine explosions. The constitutive model accounts for two regimes of behaviour. When the particle assembly is widely dispersed (regime I), the contacts between particles are treated as collisions, analogous to those between molecules in a gas or liquid. At high packing densities (regime II) the contacts are semi-permanent and consolidation is dominated by particle deformation and inter-particle friction. Regime I is modelled by extending an approach proposed by Bagnold (1954. Experiments on a gravity-free dispersion of large solid particles in a Newtonian fluid under shear. Proceedings of the Royal Society of London A 225, 49-63) to a general strain history comprising volumetric and deviatoric deformation. For regime II, classical soil mechanics models (such as Drucker-Prager) are employed. The overall model is employed to investigate the one-dimensional impact of sand against a rigid stationary target. The calculations illustrate that, unlike single-particle impact, the momentum transmitted to a rigid target is insensitive to the particle co-efficient of restitution, but strongly dependent on initial density. The constitutive model is also used to examine the spherical expansion of a shell of sand (both dry and water saturated). In line with initial experimental observations, the wet sand is predicted to form clumps while the dry sand fully disperses. The model shows that this clumping of explosively loaded wet sand exerts higher pressures on nearby targets compared to equivalent dry sand explosions.  相似文献   

14.
A thermodynamically consistent dissipative model is proposed to describe softening phenomena in anisotropic materials. The model is based on a generalized polyconvex anisotropic strain energy function represented by a series. Anisotropic softening is considered by evolution of internal variables governing the anisotropic properties of the material. Accordingly, evolution equations are formulated and anisotropic conditions for the onset of softening are defined. In numerical examples, the model is applied to simulate the preconditioning behavior of soft biological tissues subjected to cyclic loading experiments. The results suggest that the general characteristics of preconditioning with different upper load limits are well captured including hysteresis and residual deformations. A model for the Mullins effect is obtained as a special case and shows very good agreement with experimental data on mouse skin.  相似文献   

15.
This work is concerned with the determination of the effective behavior of sequentially laminated composites with nonlinear behavior of the constituting phases. An exact expression for the effective stress energy potential of two-dimensional and incompressible composites is introduced. This allows to determine the stress energy potential of a rank-N sequentially laminated composite with arbitrary volume fractions and lamination directions of the core laminates in terms of an N-dimensional optimization problem.

Stress energy potentials for sequentially laminated composites with pure power-law behavior of the phases are determined. It is demonstrated that as the rank of the lamination becomes large the behaviors of certain families of sequentially laminated composite tend to be isotropic. Particulate composites with both, stiffer and softer inclusions are considered. The behaviors of these almost isotropic composites are, respectively, softer and stiffer than the corresponding second-order estimates recently introduced by Ponte Castañeda (1996).  相似文献   


16.
The bifurcation analysis of compaction banding is extended to the formation of a tabular discrete compaction-band array. This analysis, taken together with the results of finite-difference simulations, shows that the bifurcation results in the formation of intermittent loading (elastic-plastic) and unloading (elastic) bands. The obtained analytical solution relates the spacing parameter χ (the ratio between the band thickness to the band-to-band distance) to all constitutive and stress-state parameters. Both this solution and numerical models reveal strong dependence of χ on the hardening modulus h: χ increases with h reduction. The band thickness in the numerical models is mesh dependent, but in terms of mesh-zone-size varies only from ∼2 to 4 depending on the constitutive parameters and independently on the mesh resolution. The thickness of the “elementary” compaction bands in real granular materials is equal to a few grain sizes. It follows that one grid zone in the numerical models corresponds approximately to one grain in the real material. The numerical models reproduce both discrete and continuous propagating compaction banding observed in the rock samples. These phenomena were shown to be dependent on the evolution of h and the dilatancy factor with deformation.  相似文献   

17.
18.
The mechanics of granular mixtures are pivotal in many industrial applications. Unravelling the relation between yielding and comminution, the action of mechanically induced grain size reduction, in confined mixture systems is a common and open challenge. This paper attacks this problem by adopting the breakage mechanics theory, which was originally proposed for single mineral materials. We present an extension to the theory that allows predicting: (1) the yielding pressure in granular mixtures, (2) the yield pressure increase/hardening with increasing breakage, and (3) the evolution of the grain size distributions of the separate species—all of these novel capabilities are tested and validated with experiments. Of particular appeal is the finding that the average yielding pressure is a simple generalized mean with an exponent −3/2 of the yielding pressures of the homogeneous components.  相似文献   

19.
20.
Exact solutions are derived for the problem of a two-dimensional, infinitely anisotropic, linear-elastic medium containing a periodic lattice of voids. The matrix material possesses either one infinitely soft, or one infinitely hard loading direction, which induces localized (singular) field configurations. The effective elastic moduli are computed as functions of the porosity in each case. Their dilute expansions feature half-integer powers of the porosity, which can be correlated to the localized field patterns. Statistical characterizations of the fields, such as their first moments and their histograms are provided, with particular emphasis on the singularities of the latter. The behavior of the system near the void close-packing fraction is also investigated. The results of this work shed light on corresponding results for strongly non-linear porous media, which have been obtained recently by means of the “second-order” homogenization method, and where the dilute estimates also exhibit fractional powers of the porosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号