首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Networks of interacting components are a class of complex systems that has attracted considerable interest over the last decades. In particular, if the dynamics of the autonomous components is characterised by an oscillatory behaviour, different types of synchronisation can be observed in dependence on the type and strength of interactions. In this contribution, we study the transition from non-synchronised to synchronised phase dynamics in complex networks. The most common approach to quantify the degree of phase synchronisation in such systems is the consideration of measures of phase coherence which are averaged over all pairs of interacting components. However, this approach implicitly assumes a spatially homogeneous synchronisation process, which is typically not present in complex networks. As a potential alternative, two novel methods of multivariate phase synchronisation analysis are considered: synchronisation cluster analysis (SCA) and the linear variance decay (LVD) dimension method. The strengths and weaknesses of the traditional as well as both new approaches are briefly illustrated for a Kuramoto model with long-range coupling. As a practical application, we study how spatial heterogeneity influences the transition to phase synchronisation in traffic networks where intersecting material flows are subjected to a self-organised decentralised control. We find that the network performance and the degree of phase synchronisation are closely related to each other and decrease significantly in the case of structural heterogeneities. The influences of the different parameters of our control approach on the synchronisation process are systematically studied, yielding a sequence of Arnold tongues which correspond to different locking modes.  相似文献   

2.
Irregular collective behavior of heterogeneous neural networks   总被引:1,自引:0,他引:1  
We investigate a network of integrate-and-fire neurons characterized by a distribution of spiking frequencies. Upon increasing the coupling strength, the model exhibits a transition from an asynchronous regime to a nontrivial collective behavior. Numerical simulations of large systems indicate that, at variance with the Kuramoto model, (i) the macroscopic dynamics stays irregular and (ii) the microscopic (single-neuron) evolution is linearly stable.  相似文献   

3.
Journal of Statistical Physics - In the context of the Kuramoto model of coupled oscillators with distributed natural frequencies interacting through a time-delayed mean-field, we derive as a...  相似文献   

4.
We present a general theory for the onset of coherence in collections of heterogeneous maps interacting via a complex connection network. Our method allows the dynamics of the individual uncoupled systems to be either chaotic or periodic, and applies generally to networks for which the number of connections per node is large. We find that the critical coupling strength at which a transition to synchrony takes place depends separately on the dynamics of the individual uncoupled systems and on the largest eigenvalue of the adjacency matrix of the coupling network. Our theory directly generalizes the Kuramoto model of equal strength all-to-all coupled phase oscillators to the case of oscillators with more realistic dynamics coupled via a large heterogeneous network.  相似文献   

5.
6.
We study the long-term average frequency as a function of the natural frequency for Kuramoto oscillators with periodic coefficients. Unlike the case for more general periodically forced oscillators, this function is never a "devil's staircase"; it may have plateaus at integer multiples of the forcing frequency, but we prove it is strictly increasing between these plateaus. The proof uses the fact that the flow maps for Kuramoto oscillators extend to M?bius transformations on the complex plane, and that M?bius transformations have particularly simple dynamics that rule out p∶q mode locking except in the case of fixed points (q=1). We also give a criterion for the degeneration of an integer plateau to a single point and use it to explain the absence of plateaus at even multiples of the collective frequency for a Kuramoto system with a bimodal frequency distribution.  相似文献   

7.
胡爱花  徐振源  过榴晓 《中国物理 B》2010,19(2):20511-020511
The existence of two types of generalized synchronisation is studied. The model considered here includes three bidirectionally coupled chaotic systems, and two of them denote the driving systems, while the rest stands for the response system. Under certain conditions, the existence of generalised synchronisation can be turned to a problem of compression fixed point in the family of Lipschitz functions. In addition, theoretical proofs are proposed to the exponential attractive property of generalised synchronisation manifold. Numerical simulations validate the theory.  相似文献   

8.
The Kuramoto model describes a system of globally coupled phase-only oscillators with distributed natural frequencies. The model in the steady state exhibits a phase transition as a function of the coupling strength, between a low-coupling incoherent phase in which the oscillators oscillate independently and a high-coupling synchronized phase. Here, we consider a uniform distribution for the natural frequencies, for which the phase transition is known to be of first order. We study how the system close to the phase transition in the supercritical regime relaxes in time to the steady state while starting from an initial incoherent state. In this case, numerical simulations of finite systems have demonstrated that the relaxation occurs as a step-like jump in the order parameter from the initial to the final steady state value, hinting at the existence of metastable states. We provide numerical evidence to suggest that the observed metastability is a finite-size effect, becoming an increasingly rare event with increasing system size.  相似文献   

9.
A generalization of the Kuramoto model in which oscillators are coupled to the mean field with random signs is investigated in this work. We focus on a situation in which the natural frequencies of oscillators follow a uniform probability density. By numerically simulating the model, we find that the model supports a modulated travelling wave state except for already reported π state and travelling wave state in the one with natural frequencies followingLorenztian probability density or a delta function. The dependence of the observed dynamics on the parameters of the model is explored and we find that the onset of synchronization in the model displays a non-monotonic dependence on both positive and negative coupling strength.  相似文献   

10.
Dynamical networks are important models for the behaviour of complex systems, modelling physical, biological and societal systems, including the brain, food webs, epidemic disease in populations, power grids and many other. Such dynamical networks can exhibit behaviour in which deterministic chaos, exhibiting unpredictability and disorder, coexists with synchronisation, a classical paradigm of order. We survey the main theory behind complete, generalised and phase synchronisation phenomena in simple as well as complex networks and discuss applications to secure communications, parameter estimation and the anticipation of chaos.  相似文献   

11.
12.
《Physica A》2006,365(1):155-161
Mutual equilibrium in long-range interacting systems which involve nonadditive energy, is effectively described in terms of entropy with a nonadditive composition rule. As an example, long-range Ising model is considered. The generality of the term having product of the system entropies is pointed out in this framework.  相似文献   

13.
In this study we investigate the collective behavior of the generalized Kuramoto model with an external pinning force in which oscillators with positive and negative coupling strengths are conformists and contrarians, respectively. We focus on a situation in which the natural frequencies of the oscillators follow a uniform probability density. By numerically simulating the model, it is shown that the model supports multistable synchronized states such as a traveling wave state, π state and periodic synchronous state: an oscillating π state. The oscillating π state may be characterized by the phase distribution oscillating in a confined region and the phase difference between conformists and contrarians oscillating around π periodically. In addition, we present the parameter space of the oscillating π state and traveling wave state of the model.  相似文献   

14.
《Physica A》2006,371(2):790-794
We investigate collective behaviors of coupled phase oscillators on an extended network model which can develop two fundamentally different topologies, scale-free or exponential. Each component of the network is assumed as an oscillator and that each interacts with the others following the Kuramoto model. The order parameters that measure synchronization of phases and frequencies are computed by means of dynamic simulations. It is found that system's collective behaviors exhibit strong dependence on local events: addition of new links will improve network synchronizability while rewiring of links will decrease synchronization.  相似文献   

15.
The collective dynamics of coupled two-dimensional chaotic maps on complex networks is known to exhibit a rich variety of emergent properties which crucially depend on the underlying network topology. We investigate the collective motion of Chirikov standard maps interacting with time delay through directed links of gene regulatory network of bacterium Escherichia coli. Departures from strongly chaotic behavior of the isolated maps are studied in relation to different coupling forms and strengths. At smaller coupling intensities the network induces stable and coherent emergent dynamics. The unstable behavior appearing with increase of coupling strength remains confined within a connected subnetwork. For the appropriate coupling, network exhibits statistically robust self-organized dynamics in a weakly chaotic regime.  相似文献   

16.
朱会宾  邱芳  崔宝同 《中国物理 B》2010,19(3):30515-030515
In this paper, the problem of generalised synchronisation of two different chaotic systems is investigated. Some less conservative conditions are derived using linear matrix inequality other than existing results. Furthermore, a simple adaptive control scheme is proposed to achieve the generalised synchronisation of chaotic systems. The proposed method is simple and easy to implement in practice and can be applied to secure communications. Numerical simulations are also given to demonstrate the effectiveness and feasibility of the theoretical analysis.  相似文献   

17.
Synchronization of Kuramoto phase oscillators arranged in real complex neural networks is investigated. It is shown that the synchronization greatly depends on the sets of natural frequencies of the involved oscillators. The influence of network connectivity heterogeneity on synchronization depends particularly on the correlation between natural frequencies and node degrees. This finding implies a potential application that inhibiting the effects caused by the changes of network structure can be bManced out nicely by choosing the correlation parameter appropriately.  相似文献   

18.
We use a generic model for type-I excitability (known as the SNIPER or SNIC model) to describe the local dynamics of nodes within a network in the presence of non-zero coupling delays. Utilising the method of the Master Stability Function, we investigate the stability of the zero-lag synchronised dynamics of the network nodes and its dependence on the two coupling parameters, namely the coupling strength and delay time. Unlike in the FitzHugh-Nagumo model (a model for type-II excitability), there are parameter ranges where the stability of synchronisation depends on the coupling strength and delay time. One important implication of these results is that there exist complex networks for which the adding of inhibitory links in a small-world fashion may not only lead to a loss of stable synchronisation, but may also restabilise synchronisation or introduce multiple transitions between synchronisation and desynchronisation. To underline the scope of our results, we show using the Stuart-Landau model that such multiple transitions do not only occur in excitable systems, but also in oscillatory ones.  相似文献   

19.
Paths to synchronization on complex networks   总被引:1,自引:0,他引:1  
The understanding of emergent collective phenomena in natural and social systems has driven the interest of scientists from different disciplines during decades. Among these phenomena, the synchronization of a set of interacting individuals or units has been intensively studied because of its ubiquity in the natural world. In this Letter, we show how for fixed coupling strengths local patterns of synchronization emerge differently in homogeneous and heterogeneous complex networks, driving the process towards a certain global synchronization degree following different paths. The dependence of the dynamics on the coupling strength and on the topology is unveiled. This study provides a new perspective and tools to understand this emerging phenomena.  相似文献   

20.
High-resolution data of online chats are studied as a physical system in the laboratory in order to quantify collective behavior of users. Our analysis reveals strong regularities characteristic of natural systems with additional features. In particular, we find self-organized dynamics with long-range correlations in user actions and persistent associations among users that have the properties of a social network. Furthermore, the evolution of the graph and its architecture with specific kk-core structure are shown to be related with the type and the emotion arousal of exchanged messages. Partitioning of the graph by deletion of the links which carry high arousal messages exhibits critical fluctuations at the percolation threshold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号